課 程數(shù)學(xué)章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時(shí)安排2課時(shí)指導(dǎo)教師 日期12月2 日學(xué)習(xí)目標(biāo)理解將角度從0°~360°推廣任意角。學(xué)習(xí)重點(diǎn)掌握角的度量、任意角學(xué)習(xí)難點(diǎn)理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點(diǎn)。 問題(順著問題找思路)1、正角.負(fù)角.零角.界限角和第幾象限的角概念?按照逆時(shí)針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時(shí)針旋轉(zhuǎn)所形成的角叫負(fù)角。當(dāng)射線沒有作任何旋轉(zhuǎn)時(shí),形成的角叫________(結(jié)合圖形講解) 2、在坐標(biāo)系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點(diǎn)、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級(jí) 人數(shù) 授課時(shí)數(shù)2 課 型新課 周次 授課時(shí)間 教 學(xué) 目 的 知識(shí)目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個(gè)集合相等的概念; (3)會(huì)判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動(dòng),學(xué)生之間的討論分析,加強(qiáng)合作意識(shí)。 教學(xué)重點(diǎn)集合與集合間的關(guān)系及其相關(guān)符號(hào)表示. 教學(xué)難點(diǎn)真子集概念的理解.
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法。【教學(xué)設(shè)計(jì)】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。【課時(shí)安排】 2課時(shí)(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識(shí),填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個(gè)根有 1 個(gè)根有 0 個(gè)根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時(shí),x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時(shí),x的取值范圍是什么?總結(jié):由此看到,通過對(duì)函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學(xué)目標(biāo)】1、理解含絕對(duì)值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對(duì)值的不等式的學(xué)習(xí),學(xué)會(huì)運(yùn)用變量替換的方法,從而提升計(jì)算技能?!窘虒W(xué)重點(diǎn)】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學(xué)難點(diǎn)】 利用變量替換解不等式或.【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *回顧思考 復(fù)習(xí)導(dǎo)入 問題 任意實(shí)數(shù)的絕對(duì)值是如何定義的?其幾何意義是什么? 解決 對(duì)任意實(shí)數(shù),有 其幾何意義是:數(shù)軸上表示實(shí)數(shù)的點(diǎn)到原點(diǎn)的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對(duì)值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導(dǎo) 分析 了解 思考 回答 觀察 領(lǐng)會(huì) 復(fù)習(xí) 相關(guān) 知識(shí) 點(diǎn)為 進(jìn)一 步學(xué) 習(xí)做 準(zhǔn)備 充分 借助 圖像 進(jìn)行 分析
課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時(shí)安排2課時(shí)指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點(diǎn)掌握用弧度表示角的方法學(xué)習(xí)難點(diǎn)弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過角度的計(jì)量單位:度,度分秒是如何換算的; 3、圓的周長(zhǎng)公式和扇形弧長(zhǎng)公式。問題(順著問題找思路)1、弧度制:等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負(fù)角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來表示,其絕對(duì)值|α|和圓弧長(zhǎng)l與圓的半徑r有:|α|=________。 4、一個(gè)圓的周長(zhǎng)為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實(shí)例講解)練習(xí)(通過練習(xí)固要點(diǎn))1、練習(xí)5.2.1; 2、例3;展示(通過展示強(qiáng)能力)(25分鐘)(包括學(xué)生展示回顧、問題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長(zhǎng)指定小組成員展示,結(jié)束后,該組組長(zhǎng)須總結(jié)或指定其他成員進(jìn)行總結(jié)。 2、展示過程中,提醒同學(xué)注意老師的板書,或者請(qǐng)老師進(jìn)行總結(jié),或題目的講解。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
讓學(xué)生先獨(dú)立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對(duì)平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號(hào)上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來確定其平方根,這部分內(nèi)容可用板演或展臺(tái)展示結(jié)果的方式進(jìn)行,讓學(xué)生獨(dú)立完成,應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià).3、最后,我又設(shè)計(jì)了一道辨析題:在做一道求4的平方根的題目時(shí),小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強(qiáng)說:“2是4的平方根”小芳說:“-2是4的平方根”,請(qǐng)問他們的說法正確嗎?通過這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時(shí)對(duì)以往五種運(yùn)算中從未出現(xiàn)過的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點(diǎn).
三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過程中給學(xué)生足夠的時(shí)間認(rèn)真、仔細(xì)地動(dòng)手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時(shí),培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計(jì)教學(xué)過程的設(shè)計(jì)有:1、問題引入新課:七年級(jí)已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識(shí)引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動(dòng)中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準(zhǔn)備,使學(xué)生體會(huì)到數(shù)學(xué)來源于實(shí)踐,同時(shí)對(duì)新知識(shí)的學(xué)習(xí)有了期待。
5、板書設(shè)計(jì) §1.4船有觸礁的危險(xiǎn)嗎 一、船布觸礁的危險(xiǎn)嗎 1.根據(jù)題意,畫出示意圖.將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題. 2.用三角函數(shù)和方程的思想解決關(guān)于直角三角形的問題. 3.解釋最后的結(jié)果. 二、測(cè)量塔高 三、改造樓梯 五布置課后作業(yè): 習(xí)題1.6第12 3題 六、設(shè)計(jì)說明 具有現(xiàn)實(shí)意義和挑戰(zhàn)性的內(nèi)容的設(shè)計(jì),激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生樂學(xué)。 開放性實(shí)踐問題和分層作業(yè)的設(shè)置,滿足每個(gè)學(xué)生的學(xué)習(xí)需求,使學(xué)生愿學(xué)。 多樣的學(xué)習(xí)方式和適時(shí)引導(dǎo),提高學(xué)生的學(xué)習(xí)質(zhì)量,使學(xué)生能學(xué)。 背景多樣,層層遞進(jìn),適時(shí)反思,發(fā)展學(xué)生的數(shù)學(xué)思維能力,使學(xué)生活學(xué)。 當(dāng)學(xué)生樂學(xué)、愿學(xué)、能學(xué)、活學(xué)時(shí),就將學(xué)會(huì)學(xué)習(xí),將學(xué)習(xí)當(dāng)成樂趣,作為生命中不可或缺的部分,也為學(xué)生終生學(xué)習(xí)奠定良好的基礎(chǔ)。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
②.通過“由文字語(yǔ)言到符號(hào)語(yǔ)言”再“由符號(hào)語(yǔ)言到文字語(yǔ)言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點(diǎn)策略:①.分三步分散難點(diǎn):引入時(shí)大量的實(shí)際情景,讓學(xué)生體會(huì)到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡(jiǎn)單代數(shù)式賦予實(shí)際意義,進(jìn)一步體會(huì)代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實(shí)際問題的能力.②.適時(shí)安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計(jì)為學(xué)生精彩的生成提供了很好的平臺(tái),在實(shí)際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點(diǎn),及時(shí)進(jìn)行引導(dǎo)和激勵(lì),并根據(jù)具體教學(xué)對(duì)象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強(qiáng)實(shí)踐能力的過程.讓預(yù)設(shè)與生成齊飛.
6、袋子里有8個(gè)紅球,m個(gè)白球,3個(gè)黑球,每個(gè)球除顏色外都相同,從中任意摸出一個(gè)球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動(dòng)目的:拓寬學(xué)生的思路,對(duì)本節(jié)知識(shí)進(jìn)行查缺補(bǔ)漏,并進(jìn)一步的鞏固加深,鼓勵(lì)學(xué)生大膽猜測(cè),培養(yǎng)學(xué)生勤于動(dòng)腦、勇于探究的精神. 注意事項(xiàng):對(duì)于第4題與第5題可適當(dāng)?shù)恼f出事件發(fā)生的可能性的大小,即概率的大小,為今后學(xué)習(xí)概率做鋪墊;對(duì)于第6題可根據(jù)回答情況講解.七、學(xué)習(xí)小結(jié):師生共同回顧新知探究的整個(gè)過程,互相交流總結(jié)本節(jié)的知識(shí)點(diǎn):(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有??;(3)合理運(yùn)用所學(xué)知識(shí)分析解決相關(guān)問題.目的:鍛煉學(xué)生的口頭表達(dá)能力,體會(huì)學(xué)習(xí)的成果,感受成功的喜悅,增強(qiáng)學(xué)好數(shù)學(xué)的信心.(學(xué)生暢所欲言,教師給予鼓勵(lì))
4.已知一個(gè)三角形的兩邊長(zhǎng)分別是4cm、7cm,則這個(gè)三角形的周長(zhǎng)的取值范圍是什么?目的:主要是讓學(xué)生掌握三角形三邊的和差關(guān)系具體的應(yīng)用,并能應(yīng)用生活中實(shí)際問題。同學(xué)之間可以合作交流互相探討,發(fā)展學(xué)生空間觀念、推理能力,使學(xué)生善于觀察生活、樂于探索研究,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,從中適當(dāng)?shù)膶?duì)學(xué)生進(jìn)行德育教育,教育學(xué)生穿越馬路時(shí)間越長(zhǎng)就越危險(xiǎn)。(五)課堂小結(jié)學(xué)生自我談收獲體會(huì),說說學(xué)完本節(jié)課的困惑。教師做最終總結(jié)并指出注意事項(xiàng)。目的:讓學(xué)生暢所欲言,談收獲體會(huì),教師給予鼓勵(lì)。主要是讓學(xué)生熟記新知能應(yīng)用新知解決問題,培養(yǎng)學(xué)生概括總結(jié)的能力、有條理的表達(dá)能力。注意事項(xiàng)為:判斷a,b,c三條線段能否組成一個(gè)三角形,應(yīng)注意:a+b>c,a+c>b,b+c>a三個(gè)條件缺一不可。當(dāng)a是a,b,c三條線段中最長(zhǎng)的一條時(shí),只要b+c>a就是任意兩條線段的和大于第三邊。
《用尺規(guī)作三角形》是北師大版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書.數(shù)學(xué)》七年級(jí)下冊(cè)第五章第五節(jié)的內(nèi)容。在之前的學(xué)習(xí)中,我們已經(jīng)學(xué)會(huì)用尺規(guī)作線段和角,而邊和角是三角形的基本元素,這節(jié)課主要是學(xué)習(xí)利用尺規(guī)按要求做三角形,表面上看是操作的過程,但教科書中提出了有關(guān)探究性問題,目的是引導(dǎo)學(xué)生關(guān)注作圖背后的數(shù)學(xué)思考,即用尺規(guī)作三角形用到了兩個(gè)三角形全等的條件,因此本課教學(xué)應(yīng)引導(dǎo)學(xué)生積極思考,使學(xué)生體會(huì)到作圖的每一步驟都是有根 有 據(jù)的.二、教學(xué)目標(biāo)分析參照《課程標(biāo)準(zhǔn)》的要求及教材的特點(diǎn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征 ,我制定了如下教學(xué)目標(biāo):1、知識(shí)與技能:1.會(huì)用尺規(guī)按要求作三角形:已知三邊作三角形,已知兩角及夾邊作三角形,已知兩邊及夾角作三角形.2.會(huì)寫出三角形的已知、求作、作法. 3.能對(duì)新作三角形給出合理的解釋.
教學(xué)不應(yīng)僅僅傳授課本上的知識(shí)內(nèi)容,而應(yīng)該在傳授知識(shí)內(nèi)容的同時(shí),注意對(duì)學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運(yùn)算法則告訴學(xué)生,而是由學(xué)生利用已有知識(shí)探究得到.在探究過程中,學(xué)生的數(shù)學(xué)思想得到了進(jìn)一步的拓展,學(xué)生的綜合能力得到了進(jìn)一步的提高.當(dāng)然一節(jié)課的提高并不顯著,但只要堅(jiān)持這種方式方法,最終會(huì)有一個(gè)美好的結(jié)果.2.充分挖掘知識(shí)內(nèi)涵,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)間的密切聯(lián)系在教學(xué)中,有意識(shí)、有計(jì)劃的設(shè)計(jì)教學(xué)活動(dòng),引導(dǎo)學(xué)生體會(huì)單項(xiàng)式乘法與單項(xiàng)式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問題的能力.3.課堂上應(yīng)當(dāng)把更多的時(shí)間留給學(xué)生在課堂教學(xué)中應(yīng)當(dāng)把更多時(shí)間交給學(xué)生.本節(jié)課中計(jì)算法則的探究,例題的講解,習(xí)題的完成,知識(shí)的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點(diǎn)撥,評(píng)價(jià)和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.
有意義,字母x的取值必須滿足什么條件?設(shè)計(jì)意圖:通過例題的講解,使學(xué)生加深對(duì)所學(xué)知識(shí)的理解,避免一些常見錯(cuò)誤。而變式練習(xí)設(shè)計(jì),延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點(diǎn)就在學(xué)生的操作活動(dòng)中迎刃而解了。對(duì)提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí),激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運(yùn)用,提高認(rèn)識(shí)1、通過基礎(chǔ)訓(xùn)練讓學(xué)生體驗(yàn)學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識(shí),增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。(六)、總結(jié)評(píng)價(jià),質(zhì)疑問難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計(jì)意圖:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,學(xué)生在暢所欲言中對(duì)二次根式的認(rèn)知得到進(jìn)一步的鞏固升華。五、板書設(shè)計(jì).采用綱領(lǐng)式的板書,使學(xué)生有“話”可說,有“理”可循,在簡(jiǎn)單板書設(shè)計(jì)中使學(xué)生體會(huì)到數(shù)學(xué)的簡(jiǎn)潔美。
探究活動(dòng)二的安排,是要讓學(xué)生明確只靠實(shí)驗(yàn)得出的結(jié)論,可能會(huì)以點(diǎn)帶面,從而進(jìn)一步說明學(xué)習(xí)推理的必要性。并小結(jié)出:如果要判斷一個(gè)結(jié)論不正確只要舉一個(gè)反例就可以了。探究活動(dòng)三的安排是說明只靠實(shí)驗(yàn)得出的結(jié)論也不可靠,必須經(jīng)過有根有據(jù)的推理才行?;顒?dòng)交流:(1)在數(shù)學(xué)學(xué)習(xí)中,你用到過推理嗎?(2)在日常生活中,你用到過推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學(xué)生學(xué)會(huì)簡(jiǎn)單的推理方法,同時(shí)增強(qiáng)學(xué)生的學(xué)習(xí)興趣。課堂練習(xí):①游戲:蘋果在哪里?②判斷:是誰打破玻璃?把練習(xí)變成游戲的形式,也是為了增加課堂的趣味性,提高學(xué)生的學(xué)習(xí)興趣。課堂小結(jié):進(jìn)一步明確學(xué)習(xí)推理的必要性。課后作業(yè):①課本習(xí)題6.1:2,3。②預(yù)習(xí)下一節(jié):定義與命題
2、測(cè)量。各個(gè)組的成員根據(jù)上面的設(shè)計(jì)方案在小組長(zhǎng)的帶領(lǐng)下到操場(chǎng)測(cè)量相關(guān)數(shù)據(jù)。比一比,哪組最先測(cè)量完并回到教室?(二)根據(jù)測(cè)量結(jié)果計(jì)算相關(guān)物體高度。時(shí)間為2分鐘。要求:獨(dú)立計(jì)算,并填寫好實(shí)驗(yàn)報(bào)告上。(三)展示測(cè)量結(jié)果。時(shí)間為3分鐘。各組都將自己計(jì)算的結(jié)果報(bào)告,看哪些同學(xué)計(jì)算準(zhǔn)確些?(四)整理實(shí)驗(yàn)報(bào)告,上交作為作業(yè)。此活動(dòng)主要是讓學(xué)生通過動(dòng)手實(shí)踐,分工合作,近一步理解三角函數(shù)知識(shí),以及從中體會(huì)學(xué)習(xí)數(shù)學(xué)的重要性,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和激情,增強(qiáng)團(tuán)隊(duì)意識(shí)。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識(shí)上:2、 思想方法上:五、板書設(shè)計(jì)1、目標(biāo)展示在小黑板上2、自主學(xué)習(xí)的問題展示在小黑板上3、學(xué)生設(shè)計(jì)的方案示意圖在小組展示板上展示