目標(biāo)導(dǎo)學(xué)四:賞析作品,把握詩歌藝術(shù)特色1.這首詩在結(jié)構(gòu)上共分兩節(jié),請簡要說說兩節(jié)詩歌各有什么特點及它們之間的內(nèi)在聯(lián)系。明確:詩的第一節(jié)是從虛擬的視角,即從鳥兒的視角去想象,去表現(xiàn)鳥兒對土地的忠誠與摯愛,顯得形象含蓄;第二節(jié)卻換成實寫的視角,即從作者自我的視角去實寫自己“常含淚水的眼睛”,傾訴自己對土地的“深沉”之愛,是直抒胸臆。這樣,虛境和實境的結(jié)合與對應(yīng),構(gòu)筑了全詩內(nèi)在完整的藝術(shù)空間;結(jié)果與原因的關(guān)聯(lián)與對照,又構(gòu)成了支撐全詩的內(nèi)在邏輯結(jié)構(gòu)。此外,從手法特點上看,第一節(jié)用的是比,是想象的境界;第二節(jié)則是直抒胸臆的寫實。全詩由前面蒙太奇鏡頭式的畫面暗示轉(zhuǎn)到了后面作者的直接指點,以一個強(qiáng)有力的情感抒發(fā)結(jié)束了全篇,從而把注意力引到一個濃郁的情感氛圍中,再一次感受到作者對土地的忠貞與摯愛。
一、導(dǎo)入新課常言道:“上有天堂,下有蘇杭?!焙贾葑蠲涝谖骱?。許多文人墨客用他們的生花妙筆描摹了西湖春夏的美。白居易說“最愛湖東行不足,綠楊陰里白沙堤”,這是楊柳依依生機(jī)盎然的西湖;楊萬里說“接天蓮葉無窮碧,映日荷花別樣紅”,這是明艷妖嬈的西湖。那么,寒冬大雪后的西湖又是一番怎樣的景象呢?這節(jié)課,就讓我們一起去欣賞《湖心亭看雪》。二、教學(xué)新課目標(biāo)導(dǎo)學(xué)一:認(rèn)識作者,了解作品張岱(1597—1689),字宗子,號陶庵,山陰(今浙江紹興)人。寓居杭州。出生仕宦世家,少為富貴公子,精于茶藝鑒賞,愛繁華,好山水,曉音樂、戲曲,明亡后不仕,入山著書以終。張岱為明末清初文學(xué)家、史學(xué)家,其最擅長散文,著有《陶庵夢憶》《西湖夢尋》等絕代文學(xué)名著。目標(biāo)導(dǎo)學(xué)二:朗讀訓(xùn)練,通文順字1.初讀文章,結(jié)合工具書梳理文章字詞。2.朗讀文章,劃分文章節(jié)奏,標(biāo)出節(jié)奏劃分有疑難的語句。節(jié)奏劃分示例
【教學(xué)提示】引導(dǎo)學(xué)生分析把握人物的性格特征,在理清人物性格之后,可分角色扮演,還原三顧茅廬情景。角色表演時注意引導(dǎo)學(xué)生表現(xiàn)出角色的獨特性格。目標(biāo)導(dǎo)學(xué)四:精彩段落研讀,解說“隆中對”內(nèi)容精讀“又立了一個時辰,孔明才醒……以成鼎足之勢,然后可圖中原也”,完成以下問題。1.請你結(jié)合全文內(nèi)容,說一說你對諸葛亮所吟的四句詩的理解。明確:“大夢誰先覺?平生我自知”暗示諸葛亮“未出茅廬,已知三分天下”的雄才大略,“草堂春睡足,窗外日遲遲”寫出了諸葛亮淡泊名利。這四句詩為下文故事情節(jié)的發(fā)展做了鋪墊。2.為什么作者安排通過劉備的視線寫諸葛亮的相貌?相貌描寫片段:玄德見孔明身長八尺,面如冠玉,頭戴綸巾,身披鶴氅,飄飄然有神仙之概。明確:一方面寫出諸葛亮氣宇軒昂,神異不凡,另一方面更加堅定了劉備對諸葛亮的信任,確實有將相之才,又為下文的一再邀請做了鋪墊。
探究點二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價值.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗,激發(fā)學(xué)生探索知識的興趣,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
教學(xué)設(shè)計說明:本節(jié)課從學(xué)生接觸到的實際問題出發(fā),結(jié)合新課程標(biāo)準(zhǔn)的理念,創(chuàng)造性地使用教材而設(shè)計的一節(jié)課,是前面線段的比、成比例線段等知識在現(xiàn)實生活中的應(yīng)用. 一開始情境的創(chuàng)設(shè)——彩色圖片的投影,給學(xué)生以美的感覺,激發(fā)學(xué)生的求知欲.通過實際生活中的例子,讓學(xué)生自己發(fā)表自己的看法,培養(yǎng)學(xué)生的審美情趣,又從學(xué)生最感興趣的奧運會的比賽中引出今天所要學(xué)習(xí)的內(nèi)容,從而進(jìn)一步培養(yǎng)學(xué)生的愛國主義情感.在教學(xué)設(shè)計中,充分發(fā)揮了學(xué)生的主觀能動性,通過小組討論,師生間的合作交流,解決了本節(jié)課的重點和難點.讓每個學(xué)生都能從同伴的交流中獲益,同時也培養(yǎng)了學(xué)生的合作意識,提高了學(xué)生的動手操作的能力.本節(jié)課在教學(xué)設(shè)計中主要運用了引導(dǎo)探究、分組討論的教學(xué)方法;引導(dǎo)學(xué)生自主探究、合作交流的研討學(xué)習(xí)方式,確立了學(xué)生的主體地位.
用你的語言描述一下配方法解一元二次方程的基本步驟和需注意的問題。 教師引導(dǎo)學(xué)生進(jìn)行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項。鞏固對課堂知識的理解和掌握,同時進(jìn)一步體會解一元二次方程時降次的基本策略和轉(zhuǎn)化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內(nèi)容,又有讓學(xué)有余力的學(xué)生有思考和提升的空間。思考題為后面深入研究配方法,完善對配方法的認(rèn)識做準(zhǔn)備。 同時讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)在實際生活中的作用,感受數(shù)學(xué)的美。五、板書設(shè)計我將板書分成了兩部分,重點突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當(dāng)?shù)木毩?xí),簡單明了,重點突出。六、教學(xué)評價與反思本節(jié)課我根據(jù)學(xué)生的特點采用合作交流探究式學(xué)西方法教學(xué),讓學(xué)生動起來,感受數(shù)學(xué)學(xué)習(xí)的樂趣。讓學(xué)生更加愛學(xué)數(shù)學(xué)。
1.多媒體的合理應(yīng)用,可極大的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)效果.在本節(jié)課的“情境引入”這一教學(xué)環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學(xué)生以視覺沖擊,產(chǎn)生了視覺和心理的震撼,這樣在課堂“第一時間”抓住了學(xué)生的注意力、極大的激發(fā)了學(xué)生的學(xué)習(xí)熱情,將十分有利于后面教學(xué)活動的開展,提高課堂教學(xué)效果.2.附有挑戰(zhàn)性的“問題(或活動)”、層層深入的“問題串”可激發(fā)學(xué)生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動”這一教學(xué)環(huán)節(jié)中的“做一做”設(shè)計的4個活動,由簡單的“模仿”到“創(chuàng)作設(shè)計、觀察思考”循序漸進(jìn)、挑戰(zhàn)性逐漸增大,不斷激發(fā)學(xué)生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學(xué)運用”這一教學(xué)環(huán)節(jié)中的“例2”設(shè)計的2個問題層層深入,現(xiàn)實情境味很濃,學(xué)生做起來饒有興趣.
第三環(huán)節(jié)。嘗試練習(xí),信息反饋。讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時點撥講評。△教師安排這一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動活潑、主動求知和富有的個性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學(xué)生展開討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開始分散。