(三)、歷史的必然:人民代表大會制度的確立1、《中國人民政治協(xié)商會議共同綱領(lǐng)》作為臨時憲法規(guī)定我國根本政治制度是人民代表大會制度。新中國的成立,標(biāo)志著億萬中國人民真正成為國家、社會和自己命運(yùn)的主人。此前召開的中國人民政治協(xié)商會議第一屆全體會議,為建立新型國家政權(quán)發(fā)揮了重大作用,會議通過的《中國人民政治協(xié)商會議共同綱領(lǐng)》具有臨時憲法的地位,為全國人民代表大會制度的建立奠定了法律基礎(chǔ)。共同綱領(lǐng)規(guī)定:中華人民共和國的國家政權(quán)屬于人民,人民行使國家權(quán)力的機(jī)關(guān)為各級人民代表大會和各級人民政府。2、人民代表大會制度在我國正式建立起來的標(biāo)志:1954年9月15日,第一屆全國人民代表大會第一次會議在北京召開,會議通過了《中華人民共和國憲法》,標(biāo)志著人民代表大會制度在我國正式建立起來。
①演示動畫,理解大爆炸宇宙論②主要觀點(diǎn):? 大約150億年前,我們所處的宇宙全部以粒子的形式、極高的溫度、極大的密度,被擠壓在一個“原始火球”中。? 大爆炸使物質(zhì)四散出擊,宇宙空間不斷膨脹,溫度也相應(yīng)下降,后來相繼出現(xiàn)在宇宙中的所有星系、恒星、行星乃至生命。2、其它宇宙形成理¬——穩(wěn)定理論3、大膽猜測:宇宙的將來史蒂芬·霍金是英國物理學(xué)家,他提出的黑洞理論和宇宙無邊界的設(shè)想成了現(xiàn)代宇宙學(xué)的重要基石?;艚鸬挠钪鏌o邊界的設(shè)想是這樣的:第一,宇宙是無邊的。第二,宇宙不是一個可以任意賦予初始條件或邊界的一般系統(tǒng)?;艚痤A(yù)言宇宙有兩種結(jié)局:永遠(yuǎn)膨脹下去,不斷地擴(kuò)大,我們將看到所有星系的星球老化、死亡,剩下我們孤零零的,在一片黑暗當(dāng)中。或者會塌縮而在大擠壓處終結(jié)科學(xué)巨人霍金:探索的精神)
(2)、中國堅持以互利合作實(shí)現(xiàn)共同繁榮----促進(jìn)共同發(fā)展中國堅持以互利合作實(shí)現(xiàn)共同繁榮。中國連續(xù)擔(dān)任經(jīng)社理事會理事國,積極參與經(jīng)社系統(tǒng)有關(guān)經(jīng)濟(jì)和社會發(fā)展的重要國際會議和其他活動并承辦了聯(lián)合國第四次世界婦女大會。中國積極推動南北對話和南南合作,敦促發(fā)達(dá)國家為實(shí)現(xiàn)全球普遍、協(xié)調(diào)、均衡發(fā)展承擔(dān)更多責(zé)任。中國加人多項國際人權(quán)公約并認(rèn)真履行公約義務(wù),與聯(lián)合國人權(quán)事務(wù)高級專員保持良好合作,與多國展開人權(quán)對話。相關(guān)鏈接:1995年9月,聯(lián)合國第四次世界婦女大會在北京舉行。來自197個國家和地區(qū)以及眾多國際組織的1.76萬名代表圍繞會議主題“以行動謀求平等、發(fā)展與和平”展開熱烈討論。會議通過了《北京宣言》和《行動綱領(lǐng)》,為全球婦女事業(yè)的發(fā)展注入了新的活力。
方法總結(jié):當(dāng)某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時,概率的計算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準(zhǔn)兩點(diǎn):(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點(diǎn)二:與面積有關(guān)的概率的應(yīng)用如圖,把一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉(zhuǎn)動轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設(shè)計1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時所學(xué)習(xí)的內(nèi)容多與實(shí)際相結(jié)合,因此教學(xué)過程中要引導(dǎo)學(xué)生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進(jìn)行合理的整合歸納,選擇適宜的數(shù)學(xué)方法來解決問題
1.進(jìn)一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點(diǎn))2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點(diǎn))一、情境導(dǎo)入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球?yàn)橼A,那么這個游戲是否公平?二、合作探究探究點(diǎn)一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機(jī)摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識相關(guān)的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機(jī)取的一個數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
證明:過點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
方程有兩個不相等的實(shí)數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過觀察、實(shí)踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵學(xué)生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
2、 培養(yǎng)幼兒主動學(xué)習(xí)、創(chuàng)造思考、解決問題的能力。3、 能和同伴友好合作,共同協(xié)商完成操作。4、 培養(yǎng)幼兒良好的操作習(xí)慣?;顒又攸c(diǎn)和難點(diǎn):發(fā)展幼兒組合構(gòu)建的能力。活動準(zhǔn)備:教具 色塊卡、無色魚五條、大操作卡兩張、 學(xué)具 每人紅黃藍(lán)方塊各五塊、操作卡兩張活動過程:一、送方塊寶寶給小朋友玩,讓幼兒嘗試一下組合構(gòu)建的樂趣。(培養(yǎng)幼兒主動學(xué)習(xí)的能力)教:快慢輕重的拍手游戲集中孩子的注意力,活躍課堂氣氛。孩子們,你們好,今天陳老師帶來了許多方塊寶寶,這些方塊寶寶可有趣了,瞧,我把它一個一個的接起來,就可以變成一個個圖形寶寶呢!看我變成這個圖形,再接一塊,我又變成了另外的一圖形。孩子們,你們也來試試吧,看誰變得又多又快。(每桌發(fā)一籃方塊寶寶)觀察幼兒的構(gòu)建情況,詢問幼兒所構(gòu)建的物品的名稱,向全班幼兒展示構(gòu)建新穎的作品。
(1)請同學(xué)們結(jié)合日常生活實(shí)例和教材分析說明人類要在世界各地消除貧困并保持人口的合理容量任務(wù)的艱巨性?(2)采取何種措施才能更好的解決這一問題的出現(xiàn)?教師總結(jié)(1)現(xiàn)實(shí)中的人口問題(如人口過快增長、人口城市化和人口老齡化等)引發(fā)了嚴(yán)重的資源問題和環(huán)境問題。①發(fā)達(dá)國家的人均消耗資源量很大,索取資源和轉(zhuǎn)嫁有害生產(chǎn)的地域超出了本國的范圍。②發(fā)展中國家不僅人口數(shù)量多,人均消費(fèi)水平低,而且一些國家的人口仍在快速增長。若在現(xiàn)有的經(jīng)濟(jì)基礎(chǔ)上,把發(fā)展中國家人均生活質(zhì)量提高到與發(fā)達(dá)國家相當(dāng)?shù)乃?,所引發(fā)的資源短缺和環(huán)境問題將會相當(dāng)嚴(yán)重,解決的難度也很大。(2)I就整個世界來說:①國際社會要倡導(dǎo)各國,尤其發(fā)展中國家要盡最大可能把人口控制在合理的規(guī)模之內(nèi);②建立公平的秩序,保證大多數(shù)人擁有不斷追求高水平生活質(zhì)量的平等權(quán)利。
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認(rèn)為攤主的話有道理嗎?請你用所學(xué)的有關(guān)數(shù)學(xué)知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實(shí)換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運(yùn)用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,本節(jié)課從實(shí)際問題入手,引出合并同類項的概念.通過獨(dú)立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識.教學(xué)中應(yīng)激發(fā)學(xué)生主動參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.
本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過程。在總結(jié)出同類項定義后,沒有按通常的做法,即直接分析定義中的兩個條件,強(qiáng)調(diào)兩個條件缺一不可,而是通過一組練習(xí),讓學(xué)生在具體問題中體會定義中的兩個條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識,而后,分析定義中的兩個條件,這樣會給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會更顯數(shù)學(xué)教學(xué)的枯燥,而且會使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項的概念時,當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項。
五、活動背景:健康的心靈是我們幸福的源泉,只有接納自己、喜歡自己、充滿自信才有健康的心靈。然而,隨著社會的發(fā)展,中學(xué)生中存在著許多的心理健康問題。為更好地對中學(xué)生進(jìn)行心理健康教育、更好地優(yōu)化學(xué)生的心理素質(zhì),促進(jìn)學(xué)生的心理健康成長。更好地引導(dǎo)同學(xué)們積極關(guān)注自我發(fā)展,自覺維護(hù)和提升心理健康水平,讓同學(xué)們的心理朝著陽光健康的方向發(fā)展,我們特開展以“心靈護(hù)航,快樂成長”為主題的中學(xué)生心理健康教育主題班會
2.愿意與同伴交流,分清自己的左邊和右邊?! ?3. 提高空間方位知覺和判斷力。 活動準(zhǔn)備:手環(huán)人手一個?;顒舆^程: 1.猜謎激趣。 “一棵小樹五個杈,不長樹葉不開花。從早到晚不講話,寫字畫畫不離它?!?.區(qū)別自己身體的左右。 (1)區(qū)別左右手?! ?①請小朋友舉起拿筆的那只手,招招手?! ?②交流做哪些事情需要用到右手? ③伸出左手搖一搖?! ?④出示手環(huán),請把手環(huán)戴在右手?! ?⑤小結(jié):戴手環(huán)的這只是右手。搖搖手的是左手。
一、 設(shè)計小跨欄發(fā)現(xiàn)問題一:用什么材料安全、簡便?幼兒A:用木頭,劉翔就是跨木欄桿。幼兒B:木頭太重,用塑料管。我家裝修有許多細(xì)細(xì)的管。幼兒C:那要回家拿呀?有沒有現(xiàn)在就可以用的?考慮到運(yùn)動的安全性,我們選擇了報紙,將8開的報紙一一卷起來就成了紙棍欄桿,小朋友的椅子正好合適做支架,既簡單方便又安全實(shí)用。(如圖╠╣───╠╣)很快的孩子們?nèi)齼蓛傻丶芷鹆诵】鐧冢炔患按鼐毩?xí)了。盡管有的孩子還有些膽怯,在大家的鼓勵下還是很勇敢地參與了。問題二:跨跳的時候腳總會碰到椅背,怎么辦?不一會他們發(fā)現(xiàn)跨跳的時候腳總會碰到椅背,椅子被碰得東倒西歪,有的孩子就把椅子面對面擺放好,這樣跳起來就不容易碰到了。(如圖╠╗───╔╣)
1、舉例而生活還有類似的例子嗎?2、為了加固一個高2米、寬1米的大門,需要在對角線位置加固一條木板,設(shè)木板長為a米,a的值可能是整數(shù)嗎?a的值可能是分?jǐn)?shù)嗎?3、2.如下圖B,C是一個生活小區(qū)的兩個路口,BC長為2千米,A處是一個花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說明理由.4、上圖是由16個邊長是1的小正方形拼成,任意連接小正方形的若干個頂點(diǎn),得到一些線段.試分別找出長度是有理數(shù)的線段和長度不是有理數(shù)的線段.你還能找到其他長度不是有理數(shù)的線段嗎?
1.制作紅燈籠師:(展示漂亮的燈籠)小朋友們想不想自己親手制作一個呢?生:好呀師:那小朋友們知道制作燈籠需要什么材料嗎?生:彩紙、剪刀...師:沒錯,那老師先來展示一下怎么制作燈籠吧?。ㄕ故就旰?,開始讓小朋友兩兩組合共同制作)2.制作燈籠剪紙師:小朋友們,剛剛是不是已經(jīng)制作燈籠了呀?下面我們進(jìn)行一個更好玩的環(huán)節(jié)?生:好呀好呀!師:那我先來展示一下咯,小朋友們別眨眼呀?。ㄕ故就旰螅_始讓小朋友們獨(dú)立完成)小結(jié):通過制作共同合作制作燈籠與獨(dú)自完成燈籠剪影,不僅使他們更能感知燈籠的形狀,更能提高小朋友們的動手能力和思考力。