一、上半年重點(diǎn)工作回顧今年以來,在市委、市政府的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和關(guān)心下,我區(qū)堅(jiān)持中國農(nóng)谷核心區(qū)建設(shè)不動(dòng)搖,緊扣高質(zhì)量發(fā)展要求,聚焦生態(tài)農(nóng)產(chǎn)品加工和農(nóng)耕文化旅游兩大產(chǎn)業(yè),搶抓鄉(xiāng)村振興、農(nóng)墾改革等多重機(jī)遇,扎實(shí)推進(jìn)各項(xiàng)工作,全區(qū)經(jīng)濟(jì)社會(huì)發(fā)展呈現(xiàn)出健康發(fā)展的良好態(tài)勢(shì)。上半年,出口總額完成X萬美元,同比增長X%,增幅全市排名第一;工業(yè)用電量同比增長X%,增幅全市排名第三;公共財(cái)政預(yù)算收入完成X元,同比增長X%,增幅全市排名第三;其它經(jīng)濟(jì)指標(biāo)較好實(shí)現(xiàn)雙過半任務(wù)。
今天,我很高興能夠參加這次老干部座談會(huì),與各位老領(lǐng)導(dǎo)坐在一起,共謀*的發(fā)展大計(jì)。首先,我謹(jǐn)代表區(qū)委、區(qū)政府向一直以來關(guān)心、支持全區(qū)各項(xiàng)事業(yè)發(fā)展的各位老領(lǐng)導(dǎo)、老同志表示衷心的感謝。借此機(jī)會(huì),我代表區(qū)委、區(qū)政府向各位老領(lǐng)導(dǎo)、老同志簡要通報(bào)一下*年全區(qū)經(jīng)濟(jì)社會(huì)發(fā)展情況,還請(qǐng)各位老領(lǐng)導(dǎo)多提寶貴意見。一、突出項(xiàng)目支撐,注重產(chǎn)業(yè)發(fā)展質(zhì)量,經(jīng)濟(jì)發(fā)展動(dòng)能進(jìn)一步增強(qiáng)1.招商水平和項(xiàng)目質(zhì)量不斷提升。一是加大招商引資力度。“走出去”拜訪企業(yè)*家,“請(qǐng)進(jìn)來”企業(yè)*家,長城汽車小鎮(zhèn)、華潤啤酒小鎮(zhèn)、陽光保險(xiǎn)康養(yǎng)綜合體等重大項(xiàng)目進(jìn)展順利。簽約注冊(cè)項(xiàng)目*個(gè),引進(jìn)國內(nèi)實(shí)際到位資金*億元。二是全力推進(jìn)項(xiàng)目建設(shè)。沖偉佳業(yè)家居、萬鑫寶利新材料等*個(gè)億元以上優(yōu)質(zhì)項(xiàng)目開工建設(shè),總投資*億元;尚品無紡布、嘉碳新材料等*個(gè)前景好的產(chǎn)業(yè)項(xiàng)目竣工投產(chǎn),總投資*億元;此外,東北物流基地、煙草物流園等一批高質(zhì)量續(xù)建項(xiàng)目順利推進(jìn)。三是扎實(shí)做好項(xiàng)目服務(wù)。全面落實(shí)“項(xiàng)目管家”制度,對(duì)*個(gè)重點(diǎn)項(xiàng)目精準(zhǔn)幫扶。全面核查解決招商引資承諾不兌現(xiàn)問題,促成*個(gè)停工項(xiàng)目復(fù)工。認(rèn)真貫徹落實(shí)支持民營企業(yè)發(fā)展的各項(xiàng)政策,新注冊(cè)中小企業(yè)*戶。
一、變“被動(dòng)”學(xué)習(xí),為主動(dòng)求索的過程說實(shí)話,我原來是一個(gè)愛看娛樂八卦,不愛看時(shí)政新聞的人,但是撰寫公眾號(hào)之后,有時(shí)候需要寫新聞?lì)惢顒?dòng)文稿,比如座談會(huì)、招商引資、項(xiàng)目觀摩之類的文章,最開始我也不知道怎么表述最合適,我就在“****”看看融媒體中心是怎么報(bào)道縣里主要領(lǐng)導(dǎo)相關(guān)工作的,然后把它運(yùn)用在我寫的公眾號(hào)里面。在這個(gè)過程中,我發(fā)現(xiàn)縣里的報(bào)道就是一上來就說清領(lǐng)導(dǎo)什么時(shí)間去了哪、就哪幾項(xiàng)工作做出了什么安排、達(dá)成了什么結(jié)果。并不是像我們寫作文那樣第一段用一句優(yōu)美的修辭作鋪墊,他們的報(bào)道給人感覺就是很干凈明了、有事說事、不拖泥帶水,所以慢慢地我也學(xué)著把不必要的話、不必要的字甚至不必要的標(biāo)點(diǎn)符號(hào)刪掉,提高文章的簡潔度。
同志們:下面,我就如何抓好今年的工作,講幾點(diǎn)意見。一要始終抓牢責(zé)任落實(shí)。全面深化清廉**建設(shè)工作點(diǎn)多、線長、面廣,能不能取得更大實(shí)效,關(guān)鍵在于責(zé)任落實(shí)。各清廉單元牽頭單位要牢牢扛起主抓責(zé)任,各單位主要負(fù)責(zé)人要認(rèn)真履行第一責(zé)任人職責(zé),以身作則、示范帶動(dòng)班子成員落實(shí)好“一崗雙責(zé)”,發(fā)揮好紀(jì)檢監(jiān)察工委監(jiān)督檢查作用,推動(dòng)清廉**建設(shè)各項(xiàng)工作落地落實(shí)。各專責(zé)小組要緊密結(jié)合深化清廉建設(shè)的新形勢(shì)新任務(wù)新要求,健全評(píng)價(jià)標(biāo)準(zhǔn)、深入挖掘特色、選樹標(biāo)桿品牌,全面深化7個(gè)清廉單元建設(shè)。去年,我們有幾個(gè)單位在抓責(zé)任落實(shí)方面表現(xiàn)得不錯(cuò),比如說區(qū)清廉辦充分展現(xiàn)專班工作團(tuán)隊(duì)力量,積極統(tǒng)籌協(xié)調(diào)、組織推動(dòng)和督導(dǎo)落實(shí),確保全區(qū)清廉建設(shè)工作扎實(shí)有序開展。教育文體和旅游局充分發(fā)揮了主抓責(zé)任,我區(qū)共有**所學(xué)校,但是在去年績效考評(píng)中,他們?nèi)阅芨咝Ц哔|(zhì)完成績效考評(píng)要求,并且在日常工作中也是非常積極推動(dòng)清廉學(xué)校建設(shè),召開清廉學(xué)校現(xiàn)場推進(jìn)會(huì),打造了**小學(xué)、**二小等示范點(diǎn),其他社區(qū)學(xué)校也均取得不錯(cuò)的成績,真正做到了以點(diǎn)帶面,營造了良好的校風(fēng)學(xué)風(fēng)、師德師風(fēng)。還有組織部一個(gè)牽頭單位就做了四個(gè)清廉建設(shè)板塊的內(nèi)容
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1、 前提條件:①環(huán)境幾乎一樣的平原地區(qū),人口分布均勻2、 ②區(qū)域的運(yùn)輸條件一致,影響運(yùn)輸?shù)奈┮灰蛩厥蔷嚯x。城市六邊形服務(wù)范圍形成過程。(理解)a.當(dāng)某一貨物的供應(yīng)點(diǎn)只有少數(shù)幾個(gè)時(shí),為了避免競爭、獲取最大利潤,供應(yīng)點(diǎn)的距離不會(huì)太近,它們的服務(wù)范圍都是圓形的。 b.在利潤的吸引下,不斷有新的供應(yīng)點(diǎn)出現(xiàn),原有的服務(wù)范圍會(huì)因此而縮小。這時(shí),該貨物的供應(yīng)處于飽和。每個(gè)供應(yīng)點(diǎn)的服務(wù)范圍仍是圓形的,并彼此相切c.如果每個(gè)供應(yīng)點(diǎn)的服務(wù)范圍都是圓形相切卻不重疊的話,圓與圓之間就會(huì)存在空白區(qū)。這里的消費(fèi)者如果都選擇最近的供應(yīng)點(diǎn)來尋求服務(wù)的話,空白區(qū)又可以分割咸三部分,分別屬于三個(gè)離其最近的供應(yīng)點(diǎn)。[思考]①圖2.15中城市有幾個(gè)等級(jí)?②找出表示每一等級(jí)六邊形服務(wù)范圍的線條顏色?③敘述不同等級(jí)城市之間服務(wù)范圍及其相互關(guān)系?3、理論基礎(chǔ):德國南部城市4、意義:運(yùn)用這種理論來指導(dǎo)區(qū)域規(guī)劃、城市建設(shè)和商業(yè)網(wǎng)點(diǎn)的布局。1、 應(yīng)用——“荷蘭圩田居民點(diǎn)的設(shè)置”。
學(xué)生探究案例:找出不同等級(jí)城市的數(shù)目與城鎮(zhèn)級(jí)別的關(guān)系、城鎮(zhèn)的分布與城鎮(zhèn)級(jí)別的關(guān)系并試著解釋原因。在此基礎(chǔ)上,指導(dǎo)學(xué)生一步步閱讀書上的閱讀材料,首先說明這是德國著名的經(jīng)濟(jì)地理學(xué)家克里斯泰勒對(duì)德國南部城市等級(jí)體系研究得出的中心地理論,他是在假設(shè)土壤肥力相等、資源分布均勻、沒有邊界的平原上,交通條件一致、消費(fèi)者收入及需求一致、人們就近購買貨物和服務(wù)的情況下得出的理想模式。然后指導(dǎo)學(xué)生閱讀圖2.14下文字說明,理解城市六邊形服務(wù)范圍形成過程。指導(dǎo)學(xué)生讀圖2.15,找出圖中城市的等級(jí)、每一等級(jí)六邊形服務(wù)范圍并敘述不同等級(jí)城市之間服務(wù)范圍及其相互關(guān)系,從而得出不同等級(jí)城市的空間分布規(guī)律,六邊形服務(wù)范圍,層層嵌套的理論模式。給出荷蘭圩田空白圖,讓學(xué)生應(yīng)用上面的理論規(guī)劃設(shè)計(jì)居民點(diǎn)并說出理由,再和教材上的規(guī)劃進(jìn)行對(duì)照。然后給出長三角地區(qū)城市分布圖和各城市人口數(shù),讓學(xué)生對(duì)這些城市進(jìn)行分級(jí),概括每一級(jí)城市的服務(wù)功能、統(tǒng)計(jì)每一等級(jí)城市的數(shù)目以及彼此間的平均距離,總結(jié)城市等級(jí)與服務(wù)范圍、空間分布的關(guān)系?
為大家收集整理了《高三班級(jí)團(tuán)支部新學(xué)期國旗下講話稿精選》供大家參考,希望對(duì)大家有所幫助?。?!尊敬的各位老師,親愛的同學(xué)們,大家好!我致辭的題目是《新學(xué)期 新起點(diǎn)》。很榮幸,在新學(xué)期的開始能代表全體學(xué)生在國旗下講話。首先請(qǐng)?jiān)试S我代表全體同學(xué),向多年來為我們辛勤付出的各位老師致以崇高的敬意和誠摯的祝福,祝你們新的學(xué)期里身體健康,工作順利,并預(yù)祝所有的同學(xué)們學(xué)習(xí)進(jìn)步,健康成長。金秋送爽,碩果飄香,在這酷夏的暑氣還沒有消退之時(shí),我們已迎來了一個(gè)嶄新的學(xué)期。學(xué)校里來了新的面孔,為學(xué)校注入了新鮮的血液。我們也是一樣,度過了一個(gè)歡樂美好的暑期,懷著無比喜悅的心情又回到了熟悉而又親切的菁菁校園。經(jīng)過了烈日烤灼的校園更是煥然一新。新學(xué)期,新氣象。新,就是與舊不同;新,就是變化;新,就是進(jìn)??;新,就是發(fā)展;新,就是創(chuàng)造。在新的學(xué)校,在新的學(xué)期,我們要不斷求新,求變化,求進(jìn)取,求發(fā)展,求創(chuàng)造。因?yàn)榻逃浅P碌模袑W(xué)是常新的,十三中學(xué)的每一個(gè)學(xué)子都是常新的。