魯迅曾把《昆蟲記》稱為“講昆蟲的故事”“講昆蟲生活”的楷模。魯迅說:“他的著作還有兩種缺點:一是嗤笑解剖學(xué)家,二是用人類道德于昆蟲界?!敝茏魅苏f:“法布爾的書中所講的是昆蟲的生活,但我們讀了卻覺得比看那些無聊的小說戲劇更有趣味,更有意義?!卑徒鹫f:“《昆蟲記》融作者畢生的研究成果和人生感悟于一爐,以人性觀照蟲性,將昆蟲世界化作供人類獲取知識、趣味、美感和思想的美文。”傳統(tǒng)文化玉蟬:蟬意喻人生蟬在古人的心目中地位很高,向來被視為純潔、清高、通靈的象征。玉蟬究其用途,大體可分為四種:一是佩蟬,是專門佩戴在人身上以作裝飾和避邪用,示高潔;一種為冠蟬,是作為飾物綴于帽子上的,表示高貴;一種是琀蟬,以蟬的羽化比喻人能重生,寓指精神不死,再生復(fù)活;還有一種是鎮(zhèn)蟬,做鎮(zhèn)紙用的文房用品,多出現(xiàn)在明代以后,前三種蟬屬于高古玉,主要產(chǎn)生在商周至戰(zhàn)漢時期。
四、存在的主要問題及下半年工作計劃當(dāng)前全民閱讀活動面臨的主要問題為:一是鎮(zhèn)文化站建設(shè)離鎮(zhèn)區(qū)較遠(yuǎn),去圖書閱覽室路程較遠(yuǎn),大多人不愿去,年輕人大多外出務(wù)工,多為兒童和老人,文化水平較低,又忙于家務(wù)農(nóng)活,對豐富自身知識的意愿不高,致使圖書閱覽室圖書借閱量低,使用效率不高,讀書活動的長效機(jī)制有待進(jìn)一步探索;二是村級農(nóng)家書屋需要進(jìn)一步完善相關(guān)軟硬件設(shè)施,如讀書桌椅等;三是機(jī)關(guān)干部的讀書積極性有待進(jìn)一步提高。為此,我們建議:一是要建立長效機(jī)制,將“閱讀活動”與機(jī)關(guān)精神文明創(chuàng)建活動結(jié)合起來,納入工作考核體系;二是政府引導(dǎo)并推介優(yōu)秀作品,營造“全民閱讀”的輿論氛圍,科學(xué)統(tǒng)籌整合閱讀資源;三是政府除了方針政策指導(dǎo),還必須以經(jīng)濟(jì)手段調(diào)控閱讀行為并引入到單位目標(biāo)管理,增開閱覽室,增加書籍?dāng)?shù)量,保證書籍質(zhì)量;四是要重新認(rèn)識思想教育和政治鼓動的重要性,培養(yǎng)全民閱讀的自覺性、主動性。
抱怨是容易的,正如心理專家所言,“抱怨帶來輕松和快感,猶如乘舟順流而下,那是因為我們是在順應(yīng)自己負(fù)面思考的天性,而停止抱怨,改而用積極的態(tài)度去欣賞事物美好光明的一面,卻需要意志力?!钡拇_,抱怨是很多人生活的常態(tài)——工作、家庭、人際、天氣、交通……這些都是抱怨的對象。抱怨的人是不快樂的,他永遠(yuǎn)只會在不快樂的出發(fā)點原地打轉(zhuǎn),沒有意識到自己在思維和行為上需要的改變。抱怨是容易的,而停止抱怨,卻需要意志力。
2、提高幼兒美的欣賞能力。二、活動準(zhǔn)備:凡高、米羅、修拉、畢加索、蒙德里安的畫各4幅、畫家頭像各一幅、小紅心17個、網(wǎng)架2個三、活動過程:(一)以到藝術(shù)博物館參觀引入,引導(dǎo)幼兒結(jié)伴在作品前自由欣賞。1、幼兒自由欣賞、交談。2、幼兒為自己喜歡的畫貼上小紅心。師引導(dǎo)幼兒憑借自己對畫家風(fēng)格和特點的印象來
寫作背景這首詩寫于普希金被沙皇流放的日子里,是以贈詩的形式寫在他的鄰居奧希泊娃的女兒葉甫勃拉克西亞·尼古拉耶夫娜·伏里夫紀(jì)念冊上的。那里俄國革命正如火如荼,詩人卻被迫與世隔絕。在這樣的處境下,詩人卻沒有喪失希望與斗志,他熱愛生活,執(zhí)著地追求理想,相信光明必來,正義必勝。(三)、問題探究1、“假如生活欺騙了你”指的是什么?指在生活中因遭遇艱難困苦甚至不幸而身處逆境。作者寫這首詩時正被流放,是自己真實生活的寫照。2、詩人在詩中闡明了怎樣的人生態(tài)度?請結(jié)合你感受最深的詩句說說你曾有過的體驗。詩中闡明了這樣一種積極樂觀的人生態(tài)度:當(dāng)生活欺騙了你時,不要悲傷,不要心急;在苦惱的時候要善于忍耐,一切都會過去,我們一定要永葆積極樂觀的心態(tài);生活中不可能沒有痛苦與悲傷,歡樂不會永遠(yuǎn)被憂傷所掩蓋,快樂的日子終會到來。
提起了母親,朱德將軍滿臉溫情和悲痛。生他的時候,母親不過二十剛過的年齡。她比一般婦女要高大一些,強(qiáng)壯一些,褲子和短褂上,左一塊右一塊都是補丁,兩只手上突顯著粗粗的血管,由于操勞過度,面色已是黝黑,蓬蓬的頭發(fā)在后頸上挽成一個發(fā)髻,兩只大大的褐色眼睛里充滿了賢惠,充滿了憂愁。(摘自史沫特萊《偉大的道路》)毛澤東寫給朱德母親的挽聯(lián)毛澤東曾給朱德的母親寫了一副挽聯(lián):“為母當(dāng)學(xué)民族英雄賢母,斯人無愧勞動階級完人?!泵珴蓶|在這副挽聯(lián)中高度贊揚了朱德母親的高尚品質(zhì),高度評價了他的革命戰(zhàn)友朱德的革命精神。上聯(lián),“為母”是指做母親。是的,母親是兒女的第一任老師。那么,怎樣才能做一個合格的母親呢?毛澤東接下來告訴人們“當(dāng)學(xué)民族英雄賢母”,告訴天下所有做母親的人,要學(xué)習(xí)民族英雄——朱德賢惠的母親。上聯(lián)的重點在于贊子,既悼母又贊子,一語雙關(guān)。
五、高山仰止,景行行止資料助讀1:課件出示:居里夫人長期在沒有防護(hù)措施的惡劣條件下進(jìn)行科學(xué)研究,長期接觸放射性物質(zhì),致使有害物質(zhì)嚴(yán)重危害了她的身體健康,最終得了惡性貧血白血病。鐳射線在無聲地侵蝕著居里夫人的肌體,她美麗而健康的容貌在悄悄消逝,逐漸變得眼花耳鳴,全身無力。師:重病中的居里夫人,在你們心中、在人們心中還美麗嗎?資料助讀2:我對她的人格的偉大愈來愈感到欽佩。她的堅強(qiáng),她的意志的純潔,她的律己之嚴(yán),她的客觀,她的公正不阿的判斷——所有這一切都難得地集中在一個人的身上?!獝垡蛩固埂兜磕瞵旣?#183;居里》師小結(jié):鐳有美麗的顏色,居里夫人的人格、精神更是具有美麗的顏色,而且這種美將是永恒的!希望你們永遠(yuǎn)記住美麗的居里夫人,永遠(yuǎn)記住居里夫人美好而崇高的人格!【設(shè)計意圖】資料助讀+追問,將學(xué)生對人物精神品質(zhì)的理解引向了更深的層次。
1.我寫散文,是摟草打兔子——捎帶腳。不過我以為寫任何形式的文字,都得首先把散文寫好。2.我是希望把散文寫得平淡一點,自然一點,家常一點的。3.我想把生活中真實的東西、美好的東西、人的美、人的詩意告訴人們,使人們的心靈得到滋潤,增強(qiáng)對生活的信心、信念。4.我希望我的作品能有益于世道人心,我希望使人的感情得到滋潤,讓人覺得生活是美好的,人是美的,有詩意的。你很辛苦,很累了,那么坐下來歇一會,喝一杯不涼不燙的清茶,讀一點我的作品。5.使用語言,譬如揉面。面要揉到了,才軟熟,筋道,有勁兒。水和面粉本來是兩不相干的,多揉揉,水和面的分子就發(fā)生了變化。寫作也是這樣,下筆之前,要把語言在手里反復(fù)團(tuán)弄。疑難突破深度體會《昆明的雨》中情之絢爛有些描寫不合常情。比如“我不記得昆明的雨季有多長,從幾月到幾月,好像是相當(dāng)長的。但是并不使人厭煩”,從常理看,長長的雨季是會讓人感到憋悶不舒適的,而作者卻覺得“并不使人厭煩”。由此,可體會“我”對昆明雨季的一份特別的愛。
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標(biāo)為(1,1.4),點B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
【教學(xué)目標(biāo)】(一)教學(xué)知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點的認(rèn)識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標(biāo)、開口方向及最高(低)點坐標(biāo).解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向上,最低點坐標(biāo)為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向下,最高點坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當(dāng)a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當(dāng)a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
1.教學(xué)內(nèi)容《就英法聯(lián)軍遠(yuǎn)征中國致巴特勒上尉的信》是九年級上冊第二單元的一篇課文,從教材內(nèi)容分析,該文寫的是法國著名作家雨果就英法聯(lián)軍遠(yuǎn)征中國一事,憤怒譴責(zé)英法聯(lián)軍的強(qiáng)盜行為,憤怒譴責(zé)英法聯(lián)軍毀滅世界奇跡圓明園的罪行,他深切同情中國所遭受的空前劫難,表現(xiàn)出對東方藝術(shù)、對亞洲文明、對中華民族的充分尊重。教師要做到能調(diào)動學(xué)生參與并融入課文的氛圍中并為作者的強(qiáng)烈感情所感染。2.教材的地位、作用本課是憤怒譴責(zé)非正義戰(zhàn)爭的罪惡,學(xué)習(xí)這篇課文就要抓住本文的語言特色,了解雨果的偉大情操。進(jìn)而關(guān)注那段歷史,探究被劫掠的根本原因,由此把關(guān)注的目光投向藝術(shù)、文化、人類及整個世界。本課在學(xué)生的審美體驗、能力培養(yǎng)上,都起著十分重要的作用。3.教學(xué)目標(biāo)根據(jù)新課改理念,結(jié)合本文的特點,學(xué)生的興趣,愛好及個性特征,我制定了如下教學(xué)目標(biāo):
【學(xué)習(xí)目標(biāo)】1.知識與技能:加深對燃燒條件的認(rèn)識,進(jìn)一步了解滅火的原理。2.過程與方法:體驗實驗探究的過程,學(xué)習(xí)利用實驗探究的方法研究化學(xué)。3.情感態(tài)度與價值觀:利用化學(xué)知識解釋實際生活中的具體問題,使學(xué)生充分體會到化學(xué)來源于生活,服務(wù)于社會。【學(xué)習(xí)重點】通過物質(zhì)燃燒條件的探究,學(xué)習(xí)利用控制變量的思想設(shè)計探究實驗,說明探究實驗的一般過程和方法?!緦W(xué)習(xí)難點】利用控制變量的思想設(shè)計對照實驗進(jìn)行物質(zhì)燃燒條件的探究?!菊n前準(zhǔn)備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”?!睹麕煖y控》:預(yù)習(xí)贈送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí):什么叫燃燒?燃燒條件有哪些?今天自己設(shè)計實驗來進(jìn)行探究。2.明確實驗?zāi)繕?biāo),導(dǎo)入新課。合作探究 生成能力學(xué)生閱讀課本P150的相關(guān)內(nèi)容并掌握以下內(nèi)容。實驗用品:鑷子、燒杯、坩堝鉗、三腳架、薄銅片、酒精、棉花、乒乓球、濾紙、蠟燭。你還需要的實驗用品:酒精燈、水。1.實驗:用棉花分別蘸酒精和水,放到酒精燈火焰上加熱片刻。上述實驗中我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?如果在酒精燈上加熱時間較長,會發(fā)生什么現(xiàn)象?答:蘸酒精的棉花燃燒,蘸水的棉花沒有燃燒,說明燃燒需要有可燃物。如果加熱時間較長,水蒸發(fā)后,蘸水的棉花也會燃燒。2.如圖所示,進(jìn)行實驗:我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?答:在酒精燈火焰上加熱乒乓球碎片和濾紙碎片,都能燃燒,說明二者都是可燃物。放在銅片兩側(cè)給它們加熱后可看到乒乓球碎片先燃燒,說明燃燒需要溫度達(dá)到可燃物的著火點。3.你能利用蠟燭和燒杯(或選擇其他用品)設(shè)計一個簡單實驗證明燃燒需要氧氣(或空氣)嗎?答:點燃兩支相同的蠟燭,然后在一支蠟燭上扣住一只杯子,看到被杯子扣住的蠟燭一會兒就熄滅,說明燃燒的條件之一是需要氧氣。
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.