(一)情境導(dǎo)入以鮮明的色彩、生動(dòng)的畫面演繹激光從地球發(fā)送到月球的全過程,既引出了學(xué)過的線段,又激發(fā)學(xué)生探究新知的欲望。(二) 質(zhì)疑探究在講授新課的過程中,我選擇了多媒體的教學(xué)手段。這些教學(xué)手段的運(yùn)用可以使抽象的知識(shí)具體化,枯燥的知識(shí)生動(dòng)化,乏味的知識(shí)興趣化。1、認(rèn)識(shí)線段。通過多媒體演繹,使學(xué)生對(duì)于抽象的“線段”的認(rèn)識(shí)建立在具體的生活模型基礎(chǔ)上,有助于學(xué)生認(rèn)識(shí)圖形特征,形成表象,感受生活中處處有數(shù)學(xué)。這一環(huán)節(jié)主要引導(dǎo)學(xué)生回顧所學(xué)的線段知識(shí),通過畫圖、說特征、舉例子、講授字母表示法這一系列活動(dòng),使學(xué)生進(jìn)一步認(rèn)識(shí)線段。2、 認(rèn)識(shí)射線。多媒體課件形象、生動(dòng)地演示了激光在宇宙中不斷延長(zhǎng),再延長(zhǎng),通過直觀感知,在頭腦中建立“無限延長(zhǎng)”的表象,幫助學(xué)生理解“無限延長(zhǎng)”的含義。通過教師引導(dǎo)和小組合作,共同學(xué)習(xí)射線的畫法、特征及字母表示法,進(jìn)而把所學(xué)知識(shí)還原到生活當(dāng)中,讓學(xué)生明確數(shù)學(xué)與生活緊密聯(lián)系。
《貧寒是福天道酬勤石智勇從挫折中奮起》也許是自幼的貧寒生活塑造了石智勇內(nèi)向的性格,即使是胸掛金燦燦的獎(jiǎng)牌接受全場(chǎng)觀眾歡呼,他的表情也是略顯羞澀的。小時(shí)候吃不飽肚皮的經(jīng)歷讓他至今在“最喜歡的東西”一欄還填寫著“食物”二字,而“窮人的孩子早當(dāng)家”的堅(jiān)韌,卻又是促成他今日輝煌的動(dòng)力。中國舉重隊(duì)副總教練陳文斌賽后說道:“智勇這幾年練得很苦,今天終于有了這樣的成績(jī),這是天道酬勤的結(jié)果。石智勇的奧運(yùn)會(huì)金牌是中國男舉的一次突破,我們非常激動(dòng)。”在希臘神話里,命運(yùn)女神總是讓英雄歷經(jīng)磨難。石智勇也不例外。四年前的悉尼奧運(yùn)會(huì)前夕,他在一次訓(xùn)練中扭傷腳踝,失去了參賽機(jī)會(huì)?!爱?dāng)時(shí)我傷心極了,不敢看電視直播,我怕參賽的選手成績(jī)太低了。高點(diǎn)我還好一點(diǎn),自欺欺人一下說,哎呀好高,自己去了也拿不了冠軍,要是低了,自己沒去,失去冠軍機(jī)會(huì),心里痛啊。后來結(jié)果出來,也不怎么高,心里真難受?!?/p>
1、教材簡(jiǎn)析“直角的初步認(rèn)識(shí)”這節(jié)課出自人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)課本二年級(jí)上冊(cè)第三單元。這單元的內(nèi)容是角和直角的初步認(rèn)識(shí),是在學(xué)生已經(jīng)初步認(rèn)識(shí)長(zhǎng)方形、正方形和三角形的基礎(chǔ)上教學(xué)的?!爸苯堑某醪秸J(rèn)識(shí)”是學(xué)生初步認(rèn)識(shí)了角,知道角的各部分名稱后,在這基礎(chǔ)上出現(xiàn)的。教材通過引導(dǎo)學(xué)生觀察國旗、椅子、雙桿上的角,來說明這些角都是直角。然后讓學(xué)生通過折紙做直角,加深對(duì)直角的認(rèn)識(shí)。再借助三角板來說明要判斷一個(gè)角是不是直角,可以用三角板上的直角來比一比。最后讓學(xué)生學(xué)會(huì)用三角板畫直角。學(xué)好這部分知識(shí),能為今后進(jìn)一步認(rèn)識(shí)直角以及學(xué)習(xí)其它幾何圖形打下牢固的基礎(chǔ)。2、教學(xué)目標(biāo)(1)結(jié)合生活情境,使學(xué)生初步認(rèn)識(shí)直角,會(huì)用三角板判斷直角和會(huì)畫直角。(2)通過看一看,比一比,折一折,畫一畫等教學(xué)活動(dòng),培養(yǎng)學(xué)生的觀察能力,判斷能力和實(shí)踐能力。
讓學(xué)生通過觀察和比較,明確連接兩點(diǎn)的線段的長(zhǎng)度叫做這兩點(diǎn)間的距離,兩點(diǎn)間的所有連線中線段的長(zhǎng)度最短,進(jìn)一步提升了學(xué)生的認(rèn)識(shí)。二、認(rèn)識(shí)角1、認(rèn)識(shí)角的特征。談話:通過一點(diǎn),可以畫無數(shù)條直線。那么通過一點(diǎn),可以畫多少條射線呢?(無數(shù)條)操作:請(qǐng)你從一點(diǎn)起,在練習(xí)紙上畫出兩條射線?提問:從一點(diǎn)起畫兩條射線,組成的圖形叫什么?(板書:角)談話:想一想,剛才我們是怎樣畫出角的?什么樣的圖形是角?(從一點(diǎn)引出兩條射線所組成的圖形是角)請(qǐng)一個(gè)學(xué)生上黑板畫角,其余學(xué)生再畫一個(gè)與前面不同的角,并和同學(xué)說說自己畫的步驟。歸納:由一點(diǎn)引出的兩條射線所組成的圖形就是角。2.認(rèn)識(shí)角的符號(hào)和各部分的名稱。談話:我們?cè)诙昙?jí)已經(jīng)初步認(rèn)識(shí)了角,通過今天的學(xué)習(xí),我們將進(jìn)一步加深對(duì)角的認(rèn)識(shí)。請(qǐng)同學(xué)們打開課本第17頁,自學(xué)例2,并和小組里的同學(xué)說一說你又了解了哪些有關(guān)角的知識(shí)。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測(cè)具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長(zhǎng)度不變,平行于Y軸的線段,在直觀圖中長(zhǎng)度為原來一半。4.對(duì)斜二測(cè)方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測(cè)畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測(cè)畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測(cè)畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測(cè)畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長(zhǎng),豎直線段減半;(4)整理.簡(jiǎn)言之:“橫不變,豎減半,平行、重合不改變?!?/p>
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
(六)當(dāng)堂達(dá)標(biāo)(練習(xí)二、三 10分鐘)練習(xí)二讓學(xué)生口答,通過練習(xí),鞏固學(xué)生對(duì)直線、射線、線段表示方法的掌握。練習(xí)三讓學(xué)生去黑板板演,教師檢驗(yàn)對(duì)錯(cuò)并重點(diǎn)強(qiáng)調(diào)幾何語言的表述。文字語言和圖形語言之間的轉(zhuǎn)化是難點(diǎn),著重練習(xí)文字語言向圖形語言的轉(zhuǎn)化,提高幾何語言的理解與運(yùn)用能力。當(dāng)堂達(dá)標(biāo)是檢查學(xué)習(xí)效果、鞏固知識(shí)、提高能力的重要手段。通過練習(xí),學(xué)生會(huì)體驗(yàn)到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時(shí)獲得信息反饋,以便課下查漏補(bǔ)缺。 (七)小結(jié)(3分鐘)教師提問“這節(jié)課我們學(xué)了哪些知識(shí)?”請(qǐng)學(xué)生回答,教師做適當(dāng)補(bǔ)充。課堂小結(jié)對(duì)一節(jié)課起著“畫龍點(diǎn)晴”的作用,它能體現(xiàn)一節(jié)課所講的知識(shí)和數(shù)學(xué)思想。因此,在小結(jié)時(shí),教師引導(dǎo)學(xué)生概括本節(jié)內(nèi)容的重點(diǎn)。
2、測(cè)量。各個(gè)組的成員根據(jù)上面的設(shè)計(jì)方案在小組長(zhǎng)的帶領(lǐng)下到操場(chǎng)測(cè)量相關(guān)數(shù)據(jù)。比一比,哪組最先測(cè)量完并回到教室?(二)根據(jù)測(cè)量結(jié)果計(jì)算相關(guān)物體高度。時(shí)間為2分鐘。要求:獨(dú)立計(jì)算,并填寫好實(shí)驗(yàn)報(bào)告上。(三)展示測(cè)量結(jié)果。時(shí)間為3分鐘。各組都將自己計(jì)算的結(jié)果報(bào)告,看哪些同學(xué)計(jì)算準(zhǔn)確些?(四)整理實(shí)驗(yàn)報(bào)告,上交作為作業(yè)。此活動(dòng)主要是讓學(xué)生通過動(dòng)手實(shí)踐,分工合作,近一步理解三角函數(shù)知識(shí),以及從中體會(huì)學(xué)習(xí)數(shù)學(xué)的重要性,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和激情,增強(qiáng)團(tuán)隊(duì)意識(shí)。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識(shí)上:2、 思想方法上:五、板書設(shè)計(jì)1、目標(biāo)展示在小黑板上2、自主學(xué)習(xí)的問題展示在小黑板上3、學(xué)生設(shè)計(jì)的方案示意圖在小組展示板上展示
設(shè)計(jì)意圖這一組習(xí)題的設(shè)計(jì),讓每位學(xué)生都參與,通過學(xué)生的主動(dòng)參與,讓每一位學(xué)生有“用武之地”,深刻體會(huì)本節(jié)課的重要內(nèi)容和思想方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動(dòng))引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點(diǎn)評(píng)。(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學(xué)生活動(dòng))學(xué)生發(fā)言,互相補(bǔ)充。(教師活動(dòng))布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實(shí)踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計(jì)意圖通過讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實(shí)際,對(duì)課后的書面作業(yè)分為三個(gè)層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時(shí),在知識(shí)拓展時(shí)起激學(xué)生探究的熱情,讓每一個(gè)不同層次的學(xué)生都可以獲得成功的喜悅。
解析:可以根據(jù)線段的定義寫出所有的線段即可得解;也可以先找出端點(diǎn)的個(gè)數(shù),然后利用公式n(n-1)2進(jìn)行計(jì)算.方法一:圖中線段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10條;方法二:共有A、B、C、D、E五個(gè)端點(diǎn),則線段的條數(shù)為5×(5-1)2=10條.故選C.方法總結(jié):找線段時(shí)要按照一定的順序做到不重不漏,若利用公式計(jì)算時(shí)則更加簡(jiǎn)便準(zhǔn)確.【類型四】 線段、射線和直線的應(yīng)用由鄭州到北京的某一次往返列車,運(yùn)行途中停靠的車站依次是:鄭州——開封——商丘——菏澤——聊城——任丘——北京,那么要為這次列車制作的火車票有()A.6種 B.12種C.21種 D.42種解析:從鄭州出發(fā)要經(jīng)過6個(gè)車站,所以要制作6種車票;從開封出發(fā)要經(jīng)過5個(gè)車站,所以要制作5種車票;從商丘出發(fā)要經(jīng)過4個(gè)車站,所以要制作4種車票;從菏澤出發(fā)要經(jīng)過3個(gè)車站,所以要制作3種車票;從聊城出發(fā)要經(jīng)過2個(gè)車站,所以要制作2種車票;從任丘出發(fā)要經(jīng)過1個(gè)車站,所以要制作1種車票.再考慮是往返列車,起點(diǎn)與終點(diǎn)不同,則車票不同,乘以2即可.即共需制作的車票數(shù)為:2×(6+5+4+3+2+1)=2×21=42種.故選D.
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
方法總結(jié):利用三角形三邊的數(shù)量關(guān)系來判定直角三角形,從而推出兩線的垂直關(guān)系.探究點(diǎn)二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號(hào)).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個(gè)條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設(shè)計(jì)勾股定理的逆定理: 如果一個(gè)三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力、歸納能力.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請(qǐng)學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評(píng)價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)