提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人音版小學(xué)音樂一年級(jí)上勞動(dòng)最光榮少先隊(duì)活動(dòng)課說課稿

  • 人教部編版七年級(jí)下冊(cè)黃河頌教案

    人教部編版七年級(jí)下冊(cè)黃河頌教案

    資料鏈接1.《黃河大合唱》《黃河大合唱》是由光未然作詞、冼星海譜曲的一部大型合唱音樂作品,有《黃河船夫曲》《黃河頌》《黃河之水天上來》《黃水謠》《河邊對(duì)口曲》《黃河怨》《保衛(wèi)黃河》《怒吼吧,黃河!》八個(gè)樂章。詩中將雄奇的想象與現(xiàn)實(shí)的圖景結(jié)合在一起,組成了一幅幅壯闊的歷史畫卷。2.中華民族精神中華民族在悠久的發(fā)展歷史中,積淀和形成了自己獨(dú)特而偉大的民族性格和民族精神。中華文化的基本精神,表現(xiàn)了自強(qiáng)不息、居安思危、厚德載物、樂天知足、崇尚禮儀等特征。中華文化的力量,集中體現(xiàn)為民族精神的力量。中華民族精神的核心是愛國主義。這種精神就像是泰山、長城一般壯麗地雄峙于世界的東方!疑難探究如何把握《黃河頌》語言上的特點(diǎn)?這首歌詞寫得明快雄健,節(jié)奏鮮明,音節(jié)洪亮。以短句為主,兼以長句;長短結(jié)合,自由奔放并且錯(cuò)落整齊。在韻腳上,隔二三句押韻,形成了自然和諧的韻律。

  • 人教部編版七年級(jí)下冊(cè)老山界教案

    人教部編版七年級(jí)下冊(cè)老山界教案

    【設(shè)計(jì)意圖】本環(huán)節(jié)既總結(jié)了學(xué)習(xí)的內(nèi)容,也拓展了文章的主題;引導(dǎo)學(xué)生理解長征精神在當(dāng)今時(shí)代的作用、意義,并傳承長征精神,接受革命傳統(tǒng)教育。四、總結(jié)存儲(chǔ)1.教師總結(jié)。文章在敘述紅軍翻越老山界的經(jīng)過中,進(jìn)行了富有抒情氣息的描寫,展現(xiàn)了紅軍偉大的精神力量,也讓我們感受到了長征歲月中浪漫的英雄情懷。歲月滄桑,斗轉(zhuǎn)星移,中國已發(fā)生翻天覆地的變化,長征精神亦成為中華民族的寶貴精神財(cái)富。年輕一代的我們,應(yīng)堅(jiān)定信念,弘揚(yáng)長征精神,為中華民族的偉大復(fù)興而努力,彈奏新征途的“天籟之音”。2.布置作業(yè)。(1)課外選讀:《大渡河畔英雄多》(楊得志)、《越過夾金山,意外會(huì)親人》(楊成武)。(2)以小組為單位編寫一期有關(guān)長征精神的手抄報(bào),參加班級(jí)展示活動(dòng)。

  • 人教部編版七年級(jí)下冊(cè)木蘭詩教案

    人教部編版七年級(jí)下冊(cè)木蘭詩教案

    本教學(xué)設(shè)計(jì)著眼于民歌特點(diǎn)。第1課時(shí)重在誦讀詩歌,設(shè)計(jì)不同層次的讀,引導(dǎo)學(xué)生從詩歌的形式、節(jié)奏、韻律、情感四個(gè)方面感受民歌形式自由、具有韻律美、節(jié)奏感強(qiáng)、情感富于變化的特點(diǎn),從而體會(huì)民歌的情味。第2課時(shí)重在品讀詩歌,引導(dǎo)學(xué)生通過品析情節(jié)、品味語言、析讀主題等方式,體會(huì)詩歌語言剛健明朗而質(zhì)樸生動(dòng)的特點(diǎn),逐層解讀民歌所塑造的傳奇形象,并理解民歌所傳達(dá)的愛國情懷。素養(yǎng)提升互 文互文,也叫互辭,是古詩文中常用的一種修辭手法。古文中對(duì)它的解釋是:“參互成文,合而見義?!本唧w地說,它是這樣一種表現(xiàn)形式:上下兩句或一句話中的兩個(gè)部分,看似各說兩件事,實(shí)則是互相呼應(yīng),互相闡發(fā),互相補(bǔ)充,說的是一件事。即上下文義互相交錯(cuò)、互相滲透、互相補(bǔ)充地來表達(dá)一個(gè)完整的意思。初中階段,常見的互文一般有三類:(1)單句互文單句互文,即在同一個(gè)句子中前后兩個(gè)詞語在意義上相互交錯(cuò)、滲透、補(bǔ)充。如:秦時(shí)明月漢時(shí)關(guān)。

  • 人教版三年級(jí)下冊(cè)《獅子和鹿》教案

    人教版三年級(jí)下冊(cè)《獅子和鹿》教案

    教學(xué)目標(biāo)1. 正確、流利有感情地朗讀課文2. 讀懂課文內(nèi)容,了解故事所蘊(yùn)含的道理3. 培養(yǎng)獨(dú)立閱讀能力教學(xué)重點(diǎn)理解鹿對(duì)自己的角和腿的前后不同態(tài)度教學(xué)難點(diǎn)體會(huì)故事所講述的道理課時(shí)安排1課時(shí)教學(xué)過程一、復(fù)習(xí)回顧,揭示課題1. 師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了《陶罐和鐵罐》,懂得了每個(gè)人都有長處和短處,要善于看到別人的長處,正視自己的短處,相互尊重,和睦相處。今天我們學(xué)習(xí)一篇新課文《獅子和鹿》,看看這個(gè)故事又會(huì)給我們什么啟發(fā)。教師板書課題:獅子和鹿,請(qǐng)學(xué)生讀題。2. 出示獅子和鹿的圖片,師:看到這兩種動(dòng)物,聯(lián)想到了什么呢?學(xué)生回答。師:獅子兇猛,鹿很美麗,這個(gè)大家都已知道。不過,這篇課文通過獅子和鹿的故事卻要告訴我們一個(gè)新的道理,是什么呢?下面就看誰的讀書本領(lǐng)強(qiáng),能夠自己讀懂課文,領(lǐng)悟這個(gè)道理了。

  • 部編人教版四年級(jí)下冊(cè)《綠》 教案

    部編人教版四年級(jí)下冊(cè)《綠》 教案

    二、初讀課文,整體感知1.自由地把課文朗讀一遍。自學(xué)生字詞語。2.檢查生字詞語:(1)讀準(zhǔn)字音?!境鍪菊n件4】墨水瓶、交叉、舞蹈、教練、指揮、按著節(jié)拍整齊集中墨綠嫩綠淡綠粉綠指名逐詞讀,指導(dǎo)學(xué)生讀準(zhǔn)字音。注意讀準(zhǔn)翹舌音“叉”,后鼻音“瓶”。(2)理解詞義。學(xué)生分四人小組,交流一下不理解的詞語。若是小組討論無法解決的,提出來全班討論。(3)重點(diǎn)指導(dǎo):【出示課件5】交叉:方向不同的幾條線或條狀物互相穿過。節(jié)拍:是衡量節(jié)奏的單位,在音樂中,有一定強(qiáng)弱分別的一系列拍子在每隔一定時(shí)間重復(fù)出現(xiàn)。指揮:指導(dǎo)演奏的人。整齊:有秩序,協(xié)調(diào)一致。重疊:同樣的東西層層堆疊,互相覆蓋。(4)指導(dǎo)書寫。大家讀準(zhǔn)了字音,了解了字義。請(qǐng)把要寫的字在課堂本上每個(gè)字寫一個(gè),一定要看準(zhǔn)每個(gè)字的筆畫,端正、工整地把每一個(gè)字寫好,注意寫字的姿勢。

  • 人教部編版七年級(jí)下冊(cè)老王教案

    人教部編版七年級(jí)下冊(cè)老王教案

    素養(yǎng)提升作文中怎樣運(yùn)用“以小見大”的寫作手法(1)以小人物見大。這里的“小人物”是指在社會(huì)上不出名、沒有影響的人。以小人物見大,即以生活中平凡的小人物為敘寫對(duì)象,通過塑造小人物的形象,揭示其閃光的品質(zhì),彰顯其偉大的人格,折射出底層人民的光芒,喻人以大道理,動(dòng)人以大感情,從而起到激勵(lì)、感化讀者的大作用。(2)以小事見大??梢酝ㄟ^敘寫生活中極其平常的小事闡述一個(gè)大的道理。文化常識(shí)典故故事——君子之交“君子之交”語出《莊子·山木》:“且君子之交淡若水,小人之交甘若醴;君子淡以親,小人甘以絕?!本又?,意思是賢者之間的交情,平淡如水,不尚虛華。唐貞觀年間,薛仁貴尚未得志之前,與妻子住在一個(gè)破窯洞中,衣食無著落,全靠王茂生夫婦接濟(jì)。后來,薛仁貴參軍,在跟隨唐太宗李世民御駕東征時(shí),立下汗馬功勞,被封為“平陽郡公”。一登龍門,身價(jià)百倍,前來送禮祝賀的文武大臣絡(luò)繹不絕,可都被薛仁貴婉言謝絕了。

  • 初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    (一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝1場得2分,負(fù)1場得1分。某隊(duì)在10場比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場,則負(fù)(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場,負(fù)Y場。根據(jù):勝的場數(shù)+負(fù)的場數(shù)=總場數(shù) 勝場積分+負(fù)場積分=總積分得到:X+Y=10 2X+Y=16

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時(shí)該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • (初中)國旗下講話:尋找學(xué)習(xí)的快樂,享受生活的幸福

    (初中)國旗下講話:尋找學(xué)習(xí)的快樂,享受生活的幸福

    學(xué)習(xí)快樂嗎?我想很多學(xué)生的回答是“不快樂”,為什么呢?看看我們沉重的書包就有了答案:它里面裝滿了早起晚睡、作業(yè)考試、成績?cè)u(píng)比、特招重點(diǎn)等等,所以有人形象的說它是我們身上的負(fù)擔(dān)和包袱,壓得我們喘不過氣來!果真如此嗎?當(dāng)我們靜下心來冷靜的想一想,就會(huì)得出另外一種答案:沉重的書包是我們?nèi)松闹悄摇⒆孕诺脑慈?、遠(yuǎn)大的抱負(fù)!我們說學(xué)習(xí)苦,是因?yàn)槲覀儍H僅從生理的角度去衡量它,苦于沒有時(shí)間看電視、泡網(wǎng)吧、玩游戲、苦于沒有時(shí)間貪睡、貪吃、貪玩,總之一句話,苦于沒有時(shí)間貪圖享樂!固然,吃喝玩是快樂的,但這種樂趣只是低級(jí)的、物質(zhì)的、短暫的,是動(dòng)物本能式的快樂,作為人類享受高級(jí)的、持久的快樂,應(yīng)該是精神領(lǐng)域的快樂,她能陶冶情操、讓我們自信自強(qiáng),使我們生活得更幸福!如何獲得,只有學(xué)習(xí)、學(xué)習(xí)再學(xué)習(xí)!

上一頁123...312313314315316317318319320321322323下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!