教學(xué)目標(biāo)1.能從實(shí)際問題中得到函數(shù)關(guān)系式,學(xué)會(huì)積累函數(shù)的建模思想;2.能對(duì)不同背景下函數(shù)模型(關(guān)系式)的比較,抽象出一次函數(shù)和正比例函數(shù)的概念,發(fā)展抽象思維及概括能力;3.初步理解一次函數(shù)與正比例函數(shù)的概念;4.知道一次函數(shù)與正比例函數(shù)的聯(lián)系和區(qū)別,體驗(yàn)特殊和一般的辯證關(guān)系;5.會(huì)判斷兩個(gè)變量之間的關(guān)系是一次函數(shù)還是正比例函數(shù);6.能根據(jù)問題信息,確定一次函數(shù)與正比例函數(shù)的表達(dá)式,提升數(shù)學(xué)應(yīng)用能力;7.會(huì)根據(jù)一次函數(shù)與正比例函數(shù)的概念,求字母的取值;8.在一次函數(shù)和正比例函數(shù)概念的形成與應(yīng)用過程中, 體驗(yàn)函數(shù)與人類生活的密切聯(lián)系,增強(qiáng)對(duì)函數(shù)學(xué)習(xí)的求知。感受合作交流的必要性,同時(shí)提高學(xué)生的觀察、抽象、概括的能力和語言表達(dá)能力,從而培養(yǎng)學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)的興趣。
(4)假如你是110指揮中心的調(diào)度員,描述在接到報(bào)警電話到指揮警車前往出事地點(diǎn)的工作程序。點(diǎn)撥:接警→確認(rèn)出事地點(diǎn)的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達(dá))的巡警車→通知該巡警車。(5)由此例推想,地理信息技術(shù)還可以應(yīng)用于城市管理的哪些部門中?點(diǎn)撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護(hù)、物流等部門,都可利用地理信息技術(shù)。【課堂小結(jié)】現(xiàn)代地理學(xué)中,3S技術(shù)學(xué)科的發(fā)展與應(yīng)用,日益成為地理學(xué)前沿科學(xué)研究的重要領(lǐng)域,并成為地理學(xué)服務(wù)于社會(huì)生產(chǎn)的主要途徑,現(xiàn)在3S技術(shù)已經(jīng)廣泛應(yīng)用于社會(huì)的各個(gè)領(lǐng)域。它們?nèi)呒扔蟹止び钟新?lián)系。遙感技術(shù)主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對(duì)地理信息數(shù)據(jù)的管理、更新、分析等。
三、影響區(qū)域環(huán)境說明:環(huán)境是旅游業(yè)的基礎(chǔ),旅游對(duì)環(huán)境保護(hù)具有促進(jìn)作用。世界上很多國家在發(fā)展旅游業(yè)的同時(shí),都很重視對(duì)旅游資源和環(huán)境的保護(hù),以實(shí)現(xiàn)旅游業(yè)的可持續(xù)發(fā)展。旅游業(yè)的發(fā)展對(duì)環(huán)境也有消極作用,如果旅游與環(huán)境的關(guān)系不處理好,環(huán)境也會(huì)朝著惡化的方向發(fā)展。圖1.10古建修復(fù)圖1.10對(duì)比顯示古建筑修復(fù)前后景觀的變化,說明旅游業(yè)的發(fā)展有利于文物古跡和古建筑的保護(hù)。討論:1.列舉旅游業(yè)發(fā)展有利于環(huán)境的措施。提示:建立各種自然保護(hù)區(qū)、申報(bào)歷史文物保護(hù)單位等措施都有利于保護(hù)旅游環(huán)境。2.舉例說明旅游對(duì)環(huán)境的消極作用。提示:旅游對(duì)環(huán)境的消極作用主要表現(xiàn)在:由于對(duì)旅游資源開發(fā)建設(shè)不當(dāng)或失誤,使生態(tài)環(huán)境惡化;由于大量游客的涌入,排放的各類廢棄物超過了環(huán)境自凈能力而造成環(huán)境污染;由于大量游客的接觸或不文明行為引起的對(duì)風(fēng)景、文物的破壞等。
萬眾支援,勇做戰(zhàn)“疫”的“守護(hù)者”。我們的祖國在危難之際,有一群無私奉獻(xiàn)的人,他們盡己所有捐贈(zèng)著醫(yī)療物資。韓紅東奔西走募集捐款約一億元,眾多明星網(wǎng)紅紛紛慷慨解囊;有為抗戰(zhàn)親自押送物資的汽車司機(jī);有為抗戰(zhàn)抗戰(zhàn)甘當(dāng)志愿的青年戰(zhàn)士;有為抗戰(zhàn)投筆宣傳防疫知識(shí)的文人墨士,他們一切行動(dòng)寄托他們美好的祝愿,愛與善良無關(guān)階層、無關(guān)年紀(jì),在災(zāi)難面前,他們都是大美之人,都是敢于為國家奉獻(xiàn)的人,他們是最美的戰(zhàn)“疫”“守護(hù)者”,我們這個(gè)充滿愛與力量的國家,在戰(zhàn)“疫”面前,大家精誠團(tuán)結(jié),萬眾一心共抗戰(zhàn),眾志成城戰(zhàn)疫情,用無私無畏的“大愛”續(xù)寫著中國故事。
教學(xué)難點(diǎn):老師引導(dǎo)學(xué)生夸獎(jiǎng)學(xué)生自己,父母親人及周圍的小伙伴。 教具準(zhǔn)備:和小朋友生活場(chǎng)景有關(guān)的圖片(包括在家在學(xué)校等等)。如:媽媽在收拾房間,老師上課,小朋友回答問題等場(chǎng)景的圖片, 教學(xué)場(chǎng)景:七秒卡通的幼兒園里 教學(xué)內(nèi)容: (1)好晴朗的天哪,媽媽在洗衣服,?。岩瞾韼兔Γ瑑蓚€(gè)人一起努力,干凈的衣服在陽光的照耀下好漂亮啊。小Q對(duì)媽媽說,媽媽我已經(jīng)是大孩子了,讓我來幫助你吧。媽媽說:小Q真是個(gè)熱愛勞動(dòng)的好孩子。(圖片)小Q和媽媽在洗衣服,另一邊干凈的衣服曬在陽光下。
2、懂得用多種方法保護(hù)骨骼,養(yǎng)成良好的行為習(xí)慣,促進(jìn)骨骼的生長(zhǎng)發(fā)育。 二、活動(dòng)準(zhǔn)備:動(dòng)物骨頭:魚骨頭、肉骨頭;骨骼支架圖一幅;操作卡若干;錄音機(jī)、磁帶、投影儀、筆等。三、活動(dòng)過程: (一)以動(dòng)物骨骼引起幼兒興趣。(二)了解人體的支架——骨骼。 1、找找說說哪兒有骨骼?它是怎樣的?2、結(jié)合圖片共同整理,了解人體骨骼的數(shù)量和有關(guān)名稱。3、體驗(yàn)了解骨骼的作用。
2、引導(dǎo)幼兒體驗(yàn)丟失東西和撿到東西后的著急心情,找到東西和把東西還給別人時(shí)的不同情緒情感。準(zhǔn)備:動(dòng)物頭飾情景表演過程:開始部分(一)引起興趣,引出課題?!?今天,老師要來變個(gè)魔術(shù),你們想看嗎?(二)基本部分:1、情景表演,讓幼兒了解小貓丟了東西著急、難過的心情和小兔把東西還給它以后高興的心情。提問: 1、小貓丟了什么?心里怎么樣?(著急、難過)2、誰撿到了帽子? (小兔)3、小兔撿到了帽子是怎么做的? (他說了什么?)集體練習(xí): 請(qǐng)問,這是你丟的帽子嗎?小結(jié): 把帽子還給了小貓,小貓可高興了,小兔著見小貓這么高興,他心理也很高興,我們小朋友要向小兔學(xué)習(xí),拾到東西要還給別人。2、討論,幫助幼兒體驗(yàn)丟了東西、拾到東西還給別人等情況下的不同情感。(1)小朋友有沒有無過東西? 丟過什么? 心里怎樣?(2)你丟了東西,別人拾了還給你,你心里怎樣?(3)你有沒有拾到過別人的東西? 你是怎么做的? 心里怎么樣?
讓幼兒熟練掌握雙手滾大球動(dòng)作,提高其動(dòng)作靈敏性。活動(dòng)準(zhǔn)備大球三個(gè),場(chǎng)地布置(大等邊三角形邊)活動(dòng)指導(dǎo)1、 熱身運(yùn)動(dòng);
評(píng)價(jià)分析法,就是引述事例后,對(duì)所引述的事例作適當(dāng)?shù)脑u(píng)價(jià),從而使自己的觀點(diǎn)得到印證。例如,在論“節(jié)儉”時(shí),引用了“曾國藩以儉戒子,其子曾紀(jì)澤終成出色的外交家;方志敏居官不貪,一生清貧,千古留名”的事實(shí)后,接著進(jìn)行分析:是的,“儉者心常富”,節(jié)儉能培養(yǎng)人同困難作斗爭(zhēng)的勇氣和意志,而這正是一個(gè)人立業(yè)最重要的素質(zhì)。從這個(gè)意義上說,有人說饑餓是人生的佐料,吃苦是一種資本也不無道理,而自覺和戒奢尚儉則更是促人修身養(yǎng)性,磨煉意志的有效途徑。這里,作者緊扣論點(diǎn),對(duì)論據(jù)進(jìn)行了評(píng)價(jià)性分析,這種評(píng)價(jià)分析使作者的觀點(diǎn)得到強(qiáng)化。(四)因果分析法因果分析法,就是抓住論據(jù)所述的事實(shí),并據(jù)此推求形成原因的一種分析方法。事出必有其因。我們可以依據(jù)事物發(fā)展變化的因果關(guān)系,由事物發(fā)展變化的結(jié)果,推導(dǎo)出產(chǎn)生這種結(jié)果的原因,從而揭示出一定的生活規(guī)律,使事例有力地證明觀點(diǎn)。
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
導(dǎo)語在必修第一冊(cè)中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識(shí),定性的研究了一次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)增長(zhǎng)速度的差異,知道“對(duì)數(shù)增長(zhǎng)” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個(gè)問題。新知探究問題1 高臺(tái)跳水運(yùn)動(dòng)員的速度高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員在運(yùn)動(dòng)過程中的重心相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動(dòng)員從起跳到入水的過程中運(yùn)動(dòng)的快慢程度呢?直覺告訴我們,運(yùn)動(dòng)員從起跳到入水的過程中,在上升階段運(yùn)動(dòng)的越來越慢,在下降階段運(yùn)動(dòng)的越來越快,我們可以把整個(gè)運(yùn)動(dòng)時(shí)間段分成許多小段,用運(yùn)動(dòng)員在每段時(shí)間內(nèi)的平均速度v ?近似的描述它的運(yùn)動(dòng)狀態(tài)。
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢(shì)的異同.
二、典例解析例4. 用 10 000元購買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們?cè)诶斫饬撕瘮?shù)的一般概念,了解了函數(shù)變化規(guī)律的研究?jī)?nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對(duì)函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡(jiǎn)單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號(hào)的女裝上對(duì)應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測(cè)量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時(shí),無限趨近于所有正方形的面積和
4.寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤(rùn)Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤(rùn)并且愿意為了高利潤(rùn)承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績(jī)是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績(jī)的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個(gè)或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個(gè)區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個(gè)值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示