新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.
二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修二》第四章《數(shù)列》,本節(jié)課主要學習等比數(shù)列的概念
數(shù)列是高中代數(shù)的主要內容,它與數(shù)學課程的其它內容(函數(shù)、三角、不等式等)有著密切的聯(lián)系,又是今后學習高等數(shù)學的基礎,所以在高考中占有重要地位。
學生在已學習等差數(shù)列的基礎上,引導學生類比學習等比數(shù)列,讓學生經(jīng)歷定義的形成、通項公式的推導過程,體會數(shù)形結合的數(shù)學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思,進一步培養(yǎng)學生靈活運用公式的能力。發(fā)展學生邏輯推理、直觀想象、數(shù)學運算和數(shù)學建模的的核心素養(yǎng)。
課程目標 | 學科素養(yǎng) |
A. 能夠運用等比數(shù)列的知識解決簡單的實際問題. B.能夠運用等比數(shù)列的性質解決有關問題. | 1.數(shù)學抽象:等比數(shù)列的性質 2.邏輯推理:類比等差數(shù)列性質推導等比數(shù)列性質 3.數(shù)學運算:等比數(shù)列的運用 4.數(shù)學建模:運用等比數(shù)列解決實際問題 |
重點:運用等比數(shù)列解決簡單的實際問題
難點:等比數(shù)列的綜合運用
多媒體
教學過程 | 教學設計意圖 核心素養(yǎng)目標 |
一、溫故知新 二、典例解析 例4. 用 10 000元購買某個理財產(chǎn)品一年. (1)若以月利率的復利計息,12個月能獲得多少利息(精確到1元)? (2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到)? 分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為 解:(1)設這筆錢存?zhèn)€月以后的本利和組成一個數(shù)列, 則是等比數(shù)列, 首項,公, 所以. 所以,12個月后的利息為(元). 解:(2)設季度利率為,這筆錢存?zhèn)€季度以后的本利和組成一個數(shù)列,則也是一個等比數(shù)列, 首項,公比為, 于是. 因此,以季度復利計息,存4個季度后的利息為元. 解不等式,得. 所以,當季度利率不小于時,按季結算的利息不少于按月結算的利息. 一般地,涉及產(chǎn)值增長率、銀行利息、細胞繁殖等實際問題時,往往與等比數(shù)列有關,可建立等比數(shù)列模型進行求解. 跟蹤訓練1. 2017年,某縣甲、乙兩個林場森林木材的存量分別為16a和25a, 甲林場木材存量每年比上一年遞增25%,而乙林場木材存量每年比上一年遞減20%. (1)哪一年兩林場木材的總存量相等? (2)兩林場木材的總量到2021年能否翻一番? 解:(1)由題意可得 16a(1+25%)n-1=25a(1-20%)n-1, 解得n=2, 故到2019年兩林場木材的總存量相等. (2)令n=5,則a5=16a4+25a4<2(16a+25a), 故到2021年不能翻一番. 例5.已知數(shù)列的首項. (1)若為等差數(shù)列,公差,證明數(shù)列為等比數(shù)列; (2)若為等比數(shù)列,公比,證明數(shù)列為等差數(shù)列. 分析:根據(jù)題意,需要從等差數(shù)列、等比數(shù)列的定義出發(fā),利用指數(shù)、對數(shù)的知識進行證明。 證明(1):由,得的通項公式為. 設,則: , 又, 所以,是以 27為首項,9為公比的等比數(shù)列. 證明(2):由, ,得 兩邊取以3為底的對數(shù),得 所以 .又 , 所以,是首項為1,公差為的等差數(shù)列. 是等差數(shù)列,則數(shù)列是等比數(shù)列; 2.若數(shù)列是各項均為正的等比數(shù)列,則數(shù)列是等差數(shù)列 例6.某工廠去年12月試產(chǎn)1050個高新電子產(chǎn)品,產(chǎn)品合格率為.從今年1月開始,工廠在接下來的兩年中將生產(chǎn)這款產(chǎn)品.1月按去年12月的產(chǎn)量和產(chǎn)品合格率生產(chǎn),以后每月的產(chǎn)量都在前一個月的基礎上提高,產(chǎn)品合格率比前一個月增加,那么生產(chǎn)該產(chǎn)品一年后,月不合格品的數(shù)量能否控制在100個以內? 分析:設從今年1月起各月的產(chǎn)量及合格率分別構成數(shù)列,,則各月不合格品的數(shù)量構成數(shù)列,由題意可知,數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,由于數(shù)列既非等差數(shù)列又非等比數(shù)列,所以可以先列表觀察規(guī)律,再尋求問題的解決方法. 解:(1)設從今年1月起,各月的產(chǎn)量及不合格率分別構成數(shù)列,由題意, 則從今年1月起,各月不合格產(chǎn)品的數(shù)量是 由計算工具計算(精確到0.1),并列表 觀察發(fā)現(xiàn),數(shù)列先遞增,在第6項以后遞減,所以只要設法證明當時,遞減,且<100即可. 由 , 得 所以,當時,遞減 又<100, 所以當24時, <100 所以,生產(chǎn)該產(chǎn)品一年后,月不合格的數(shù)量能控制在100個以內. |
通過與等差數(shù)列進行對比,發(fā)展學生類比思維能力,加強記憶。發(fā)展學生數(shù)學抽象、數(shù)學運算、數(shù)學建模的核心素養(yǎng)。
通過運用等比數(shù)列模型,解決實際問題。發(fā)展學生邏輯推理、數(shù)學抽象和數(shù)學建模的核心素養(yǎng)。增強應用意識。
通過典型例題,加深對等差與等比數(shù)列概念的理解,體會等差與等比數(shù)列的內在聯(lián)系。發(fā)展學生邏輯推理,直觀想象、數(shù)學抽象和數(shù)學運算的核心素。
通過典型例題,加深學生對等比數(shù)列綜合運用能力。發(fā)展學生邏輯推理,直觀想象、數(shù)學抽象和數(shù)學運算的核心素
|
三、達標檢測 1.(2021江蘇南通市高二期末)在流行病學中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù). 一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定,假定某種傳染病的基本傳染數(shù),那么感染人數(shù)由1個初始感染者增加到2000人大約需要的傳染輪數(shù)為( ) 注:初始感染者傳染個人為第一輪傳染,這個人再傳染個人為第二輪感染. A.5 B.6 C.7 D.8 【答案】B 【詳解】設經(jīng)過第輪傳染,感染人數(shù)為,經(jīng)過第一輪感染后,,經(jīng)過第二輪感染后,,于是可以得知經(jīng)過傳染,每一輪感染總人數(shù)構成等比數(shù)列,所以經(jīng)過第輪傳染,感染人數(shù)為,當時,解得, 因此感染人數(shù)由1個初始感染者增加到2000人大約需要的傳染輪數(shù)為6輪. 2.(2021北京高二期末)已知等比數(shù)列的各項均為正數(shù),且,則 . 【答案】10 【詳解】解:因為等比數(shù)列的各項均為正數(shù),且 所以 3.已知Sn是數(shù)列{an}的前n項和,且Sn=2an+n-4. (1)求a1的值. (2)若bn=an-1,試證明數(shù)列{bn}為等比數(shù)列. 分析:(1)由n=1代入Sn=2an+n-4求得;(2)先由Sn=2an+n-4,利用Sn和an的關系得{an}的遞推關系,然后構造出數(shù)列{an-1}利用定義證明. 解: (1)因為Sn=2an+n-4, 所以當n=1時,S1=2a1+1-4,解得a1=3. (2)證明:因為Sn=2an+n-4, 所以當n≥2時, Sn-1=2an-1+(n-1)-4, Sn-Sn-1=(2an+n-4)-(2an-1+n-5),即an=2an-1-1, 所以an-1=2(an-1-1), 又bn=an-1,所以bn=2bn-1, 且b1=a1-1=2≠0, 所以數(shù)列{bn}是以b1=2為首項,2為公比的等比數(shù)列. 4.已知a,b,c,x,y,z都是不等于1的正數(shù),且ax=by=cz,成等差數(shù)列.求證:a,b,c成等比數(shù)列. 證明:令ax=by=cz=m(m>0). 則x=logam,于是=logma,同理=logmb,=logmc, 因為成等差數(shù)列, 所以,即2logmb=logma+logmc. 因此logmb2=logm(ac),故b2=ac. 所以a,b,c成等比數(shù)列. |
通過練習鞏固本節(jié)所學知識,通過學生解決問題,發(fā)展學生的數(shù)學運算、邏輯推理、直觀想象、數(shù)學建模的核心素養(yǎng)。
|
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應對。
二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。
今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
(二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網(wǎng)招標。
三是做大做強海產(chǎn)品自主品牌。工作隊于xx年指導成立的冬松村海產(chǎn)品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產(chǎn)品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產(chǎn)業(yè)發(fā)展工作群,收集本地企業(yè)在產(chǎn)品銷售、技術、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農貸款獲批,xx萬貸款正在審批中。在壯大既有產(chǎn)業(yè)的同時,完善聯(lián)農帶農機制,一方面鼓勵企業(yè)雇用本地農戶就業(yè),另一方面計劃與本地農戶簽訂長期收購合同,讓農民種得放心、種得安心,帶動當?shù)厝罕姽餐赂弧?/p>
第一,主題教育是一次思想作風的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔當?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領導帶頭、以上率下。第四,必須務實求實、認真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領先,狠抓學習教育。三是突出問題導向,深入整改糾治。四是堅持領導帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學習。三是圍繞“統(tǒng)”字抓協(xié)調。5.一是形勢所需。二是任務所系。三是職責所在。四是制度所定。6.一要提升認識。二要積極作為。三要密切協(xié)作。
第二,要把調查研究貫穿始終,實干擔當促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學習指導發(fā)展實踐,以深化調查研究推動解決發(fā)展難題。領導班子成員要每人牽頭XX個課題開展調查研究,XX月底前召開調研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調研計劃,通過座談訪談、問卷調查、統(tǒng)計分析等方式開展調查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風。認真落實公司主題教育整改整治工作方案要求,堅持邊學習、邊對照、邊檢視、邊整改,對標對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結合巡視巡察、審計和內外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。