[例3]、用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是_________。四、鞏固強(qiáng)化:1、一個(gè)正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個(gè)平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個(gè)平面去截幾何體,若截面是三角形,這個(gè)幾何體可能是__________________________________________________.4*、用一個(gè)平面截一個(gè)幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個(gè)平面截一個(gè)正方體的一個(gè)角,剩下的幾何體有幾個(gè)頂點(diǎn)、幾條棱、幾個(gè)面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個(gè)欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會(huì)有_____和_______這兩種較特殊圖形,截法如下:
解析:從各點(diǎn)的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細(xì)觀察每四個(gè)點(diǎn)的橫、縱坐標(biāo),發(fā)現(xiàn)存在著一定規(guī)律性.因?yàn)?015=503×4+3,所以點(diǎn)A2015在第二象限,縱坐標(biāo)和橫坐標(biāo)互為相反數(shù),所以A2015的坐標(biāo)為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計(jì)軸對稱與坐標(biāo)變化關(guān)于坐標(biāo)軸對稱作圖——軸對稱變換通過本課時(shí)的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標(biāo)變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實(shí)空間及圖形的認(rèn)識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)的樂趣.
(1)依照此規(guī)律,第20個(gè)圖形共有幾個(gè)五角星?(2)擺成第n個(gè)圖形需要幾個(gè)五角星?(3)擺成第2015個(gè)圖形需要幾個(gè)五角星?解析:通過觀察已知圖形可得:每個(gè)圖形都比其前一個(gè)圖形多3個(gè)五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個(gè)圖中,五角星有3個(gè)(3×1);第2個(gè)圖中,五角星有6個(gè)(3×2);第3個(gè)圖中,五角星有9個(gè)(3×3);第4個(gè)圖中,五角星有12個(gè)(3×4);∴第n個(gè)圖中有五角星3n個(gè).∴第20個(gè)圖中五角星有3×20=60個(gè).(2)擺成第n個(gè)圖形需要五角星3n個(gè).(3)擺成第2015個(gè)圖形需要6045個(gè)五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個(gè)值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個(gè)圖形需要3n個(gè)五角星.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗(yàn)證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗(yàn)教學(xué)活動(dòng)的方法,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
設(shè)計(jì)意圖:最后是當(dāng)堂訓(xùn)練,目標(biāo)檢測,這一環(huán)節(jié)要盡量讓學(xué)生獨(dú)立完成,使訓(xùn)練高效,在學(xué)生訓(xùn)練時(shí)教師要巡回輔導(dǎo),重點(diǎn)關(guān)注課堂表現(xiàn)不太突出的學(xué)生,由于本課時(shí)內(nèi)容多,訓(xùn)練貫穿課堂始終,加上不能使用計(jì)算器,因此課堂節(jié)奏難于加快,所以當(dāng)堂訓(xùn)練的時(shí)間預(yù)估不足。四、教學(xué)思考1.教材是素材,本節(jié)課對教材進(jìn)行了全新的處理和大膽的取舍,力求創(chuàng)設(shè)符合學(xué)生實(shí)際的問題情境,讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學(xué)生的應(yīng)用意識及分析問題解決問題的能力,培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力及轉(zhuǎn)化的思維方法。2.充分相信學(xué)生并為學(xué)生提供展示自己的機(jī)會(huì),課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及小組交流、演板等形式,幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。
教學(xué)過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設(shè)計(jì) (一)、新課引入教師提問:一個(gè)直角三角形中,一個(gè)銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計(jì)意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開展。 (二)、探究新知活動(dòng)一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個(gè)銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個(gè)三角函數(shù)值,還有兩個(gè)特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
注意強(qiáng)調(diào)概念理解不到位的方面:① tanA是一個(gè)完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”,若用三個(gè)字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個(gè)比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學(xué)生求∠A,∠B的正切及時(shí)強(qiáng)化學(xué)生對概念的3、正切函數(shù)的應(yīng)用理解通過實(shí)際問題的解答進(jìn)一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學(xué)生進(jìn)行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點(diǎn)及注意點(diǎn)五、達(dá)標(biāo)測試具體思路:把幾個(gè)問題分為四個(gè)等級,方便對學(xué)生的了解;通過評價(jià)讓學(xué)生對自己的學(xué)習(xí)也做到心中有數(shù)。
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點(diǎn)三:工程問題一個(gè)道路工程,甲隊(duì)單獨(dú)施工9天完成,乙隊(duì)單獨(dú)做24天完成.現(xiàn)在甲乙兩隊(duì)共同施工3天,因甲另有任務(wù),剩下的工程由乙隊(duì)完成,問乙隊(duì)還需幾天才能完成?解析:首先設(shè)乙隊(duì)還需x天才能完成,由題意可得等量關(guān)系:甲隊(duì)干三天的工作量+乙隊(duì)干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊(duì)還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊(duì)還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時(shí)間=工作總量,當(dāng)題中沒有一些必須的量時(shí),為了簡便,應(yīng)設(shè)其為1.三、板書設(shè)計(jì)“希望工程”義演題目特點(diǎn):未知數(shù)一般有兩個(gè),等量關(guān)系也有兩個(gè)解題思路:利用其中一個(gè)等量關(guān)系設(shè)未知數(shù),利用另一個(gè)等量關(guān)系列方程
解:設(shè)截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關(guān)系.探究點(diǎn)三:面積變化問題將一個(gè)長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個(gè)底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計(jì)算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計(jì)算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個(gè)變化過程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對課前解方程的變形能說出哪一過程是移項(xiàng).對比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡、檢驗(yàn).)
目的:進(jìn)一步理解追擊問題的實(shí)質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運(yùn)用鞏固活動(dòng)內(nèi)容:育紅學(xué)校七年級學(xué)生步行郊外旅行,1班的學(xué)生組成前隊(duì),步行速度為4千米/小時(shí),3班的學(xué)生組成后隊(duì),步行速度為6千米/小時(shí),1班出發(fā)一個(gè)小時(shí)后,3班才出發(fā)。請根據(jù)以上的事實(shí)提出問題并嘗試回答。問題1:3班追上1班用了多長時(shí)間 ?問題2:3班追上1班時(shí),他們離學(xué)校多遠(yuǎn)?問題3:………………目的:給學(xué)生提供進(jìn)一步鞏固建立方程模型的基本過程和方法的熟悉機(jī)會(huì),讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會(huì)借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時(shí)還需注意檢驗(yàn)方程解的合理性.實(shí)際活動(dòng)效果:由于題目較簡單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問題的優(yōu)越性.
還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項(xiàng)的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號.
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線的走勢看,甲隊(duì)比賽成績呈上升趨勢,而乙隊(duì)比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊(duì)勝三場,乙隊(duì)勝兩場,甲隊(duì)成績較好;從方差看,甲隊(duì)比賽成績比乙隊(duì)比賽成績波動(dòng)小,甲隊(duì)成績較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過程,通過實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實(shí)際問題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個(gè)方向看到的簡單物體的形狀,會(huì)畫立方體及簡單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對“6+7”進(jìn)行開方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
1、掌握有理數(shù)混合運(yùn)算法則,并能進(jìn)行有理數(shù)的混合運(yùn)算的計(jì)算。2、經(jīng)歷“二十四”點(diǎn)游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點(diǎn)]有理數(shù)混合運(yùn)算法則。[教學(xué)難點(diǎn)]培養(yǎng)探索思 維方式?!窘虒W(xué)過程】情境導(dǎo)入——有理數(shù)的混合運(yùn)算是指一個(gè)算式里含有加、減、乘、除、乘方的多種運(yùn)算.下面的算式里有哪幾種運(yùn)算?3+50÷22×( )-1.有理數(shù)混合運(yùn)算的運(yùn)算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運(yùn)算,按照從左至右的順序進(jìn)行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運(yùn)算;乘法和除法叫做第二級運(yùn)算;乘方和開方(今后將會(huì)學(xué)到)叫做第三級運(yùn)算。注意:可以應(yīng)用運(yùn)算律,適當(dāng)改變運(yùn)算順序,使運(yùn)算簡便.合作探究——
討論歸納,總結(jié)出多個(gè)有理數(shù)相乘的規(guī)律:幾個(gè)不等于0的因數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號為正。只要有一個(gè)因數(shù)為0,積就為0。(2)幾個(gè)不等于0的因數(shù)相乘時(shí),積的絕對值是多少?(生:積的絕對值是這幾個(gè)因數(shù)的絕對值的乘積.)例2、計(jì)算:(1) ;(2) 分析:(1)有多個(gè)不為零的有理數(shù)相乘時(shí),可以先確定積的符號,再把絕對值相乘;(2)若其中有一個(gè)因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動(dòng):把-6表示成兩個(gè)整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?(1)有理數(shù)的乘法法則。(2)多個(gè)不等于0的有理數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定。(3)幾個(gè)數(shù)相乘時(shí),如果有一個(gè)因數(shù)是0,則積就為0。(4)乘積是1的兩個(gè)有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題
師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會(huì)不會(huì)出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進(jìn)出貨的具體情形。生6:如星期一倉庫進(jìn)貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號,再計(jì)算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學(xué)生板演,讓學(xué)生批改并說明理由。
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級分別計(jì)劃借籃球總數(shù)的 , 和 。請你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。