本節(jié)內(nèi)容來自人教版高中數(shù)學必修一第一章第一節(jié)集合第二課時的內(nèi)容。集合論是現(xiàn)代數(shù)學的一個重要基礎(chǔ),是一個具有獨特地位的數(shù)學分支。高中數(shù)學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數(shù)概念的基礎(chǔ)知識和必備工具。本小節(jié)內(nèi)容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進一步學習集合與集合之間的關(guān)系,同時也是下一節(jié)學習集合間的基本運算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過本節(jié)內(nèi)容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結(jié)的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數(shù)學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數(shù)形結(jié)合思想。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問題導入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
本節(jié)是新人教A版高中數(shù)學必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關(guān)系,這為學習本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當?shù)膯栴}情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學的主要內(nèi)容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關(guān)系及運算。 1.數(shù)學抽象:集合交集、并集、補集的含義;2.數(shù)學運算:集合的運算;3.直觀想象:用 圖、數(shù)軸表示集合的關(guān)系及運算。
四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應用,也是函數(shù)思想的具體體現(xiàn). 如何科學的把實際問題轉(zhuǎn)化成數(shù)學問題,如何選擇自變量建立數(shù)學關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學關(guān)系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內(nèi)容學生根據(jù)課堂學習,自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學習中的易錯點;
第一節(jié)通過研究集合中元素的特點研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點通過研究元素得到兩個集合之間的關(guān)系,尤其學生學完兩個集合之間的關(guān)系后,一定讓學生明確元素與集合、集合與集合之間的區(qū)別。課程目標1. 了解集合之間包含與相等的含義,能識別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達集合間的關(guān)系,體會直觀圖示對理解抽象概念的作用。數(shù)學學科素養(yǎng)1.數(shù)學抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學運算:由集合間的關(guān)系求參數(shù)的范圍,常見包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過集合關(guān)系列不等式組, 此過程中重點關(guān)注端點是否含“=”及 問題;5.數(shù)學建模:用集合思想對實際生活中的對象進行判斷與歸類。
它位于三角函數(shù)與數(shù)學變換的結(jié)合點上,能較好反應三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.
材料四:印度提倡“只生一個好”——鼓勵三人小家庭 生男生女都一樣材料五:印度尼西亞《人口發(fā)展與幸福家庭法》材料六:我國基本國策 計劃生育(小結(jié))通過對以上材料的分析我們可以得出這樣的結(jié)論,不同的國家應該采取不同的人口政策,對與發(fā)達國家來說人口增長緩慢,應采取鼓勵生育,吸引移民的措施;發(fā)展中國家人口增長較快,實行控制人口的政策已經(jīng)迫在眉睫。不論是發(fā)達國家還是發(fā)展中國家共同的目標就是實現(xiàn)環(huán)境人口和社會經(jīng)濟的協(xié)調(diào)發(fā)展?!菊n堂小結(jié)】這節(jié)課我們主要學習了人口的自然增長,影響人口自然增長的因素有哪些?(人口的自然增長率和人口的基數(shù))世界人口的數(shù)量在不同的歷史時期表現(xiàn)出不同的特征,同一歷史時期的不同地區(qū),人口數(shù)量的增長又有不同的特點。面對不同的人口形勢,各國應采取不同的人口政策。
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎(chǔ).通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結(jié)論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
2、探索根據(jù)實物圖的內(nèi)容選擇答案圖,并列出8的第一、二組加減算試。3、用較準確、完整的語言講述算式的含意。教學準備:教具:圖片:8的第一組實物圖七張、第二組實物圖五張。學具:幼兒用書、鉛筆若干。操作材料若干(7以內(nèi)的加減算式和8的第一、二組加減算試。)活動過程:一、集體活動。1、復習8的組成——玩碰球游戲。2、學習8的第一組加減。
2、獨立將三幅圖連起來,表達其中的含義,運用正確的詞匯表達圖意。 3、敢于克服膽怯的心理,大膽回答問題。活動準備:1、教具:有關(guān)4的減法圖三幅?! ?2、學具:幼兒用書,鉛筆?;顒舆^程:1、集體活動?! ?(1)游戲“看誰說得快”?! ?教師提出要與幼兒玩游戲,隨后講一講游戲規(guī)則:教師說一個數(shù)字,請幼兒說出它后面的一個數(shù)字。教師報數(shù),全體幼兒嘗試回答,當全體幼兒玩的比較熟練后,可以與小組的幼兒玩?! ?教師說出游戲的另一個規(guī)則:教師說一個數(shù)字,幼兒說出它前面的一個數(shù)字。教師報數(shù),全體幼兒嘗試回答。
【教學目標】 1.理解人口數(shù)量在社會的發(fā)展過程中的變化趨勢,并能一一解釋其原因;2.理解發(fā)達國家和發(fā)展中國家人口增長的差異和成因,并理解不同國家有不同的人口政策;3.運用圖表分析世界人口增長模式的特點,并比較人口增長模式的時間和空間的差異;4.通過學習,能讀懂并分析人口增長坐標圖;同時能辯證地認識人口增長的不同狀況采取的人口政策也不同?!窘虒W重、難點及解決辦法] 】重點:分析并比較人口增長模式在時間和空間上的差異難點:理解人口增長模式的三個指標解決方法:讀圖分析比較法 調(diào)查研究法 案例分析法 自主學習與合作探究 【教學準備】多媒體課件缺勤登記:【板書設計】第一節(jié)人口數(shù)量的變化第一節(jié) 人口數(shù)量的變化一、人口的自然增長(一)人口在數(shù)量變化在時間上是不均勻的(二)世界人口增長在空間上的差異——不均衡二、人口的增長模式及其轉(zhuǎn)變
2、在活動中,讓幼兒能按教師的要求進行數(shù)學操作活動。3、激發(fā)幼兒對數(shù)學活動的興趣?;顒訙蕚洌盒▲喿宇^飾一個;用各種幾何圖形拼成的小路;五角星?;顒舆^程:一、觀看情景表演小鴨子走在回家的路上,一不小心摔了一跤。師:小鴨子你為什么摔跤??? <請小朋友們幫助它把路鋪好。
計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結(jié)果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標明了這個鍵的功能。我們看鍵盤上標有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關(guān)機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。