說教材:(1)教學內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學數(shù)學教科書第三冊中的第16—17頁的例1及“做一做”,練習三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學生學習筆算減法的開始,也是以后學習多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進行教學的,所以教材先安排了口算整十數(shù)減整十數(shù)、兩位數(shù)減整十數(shù)、兩位數(shù)減一位數(shù)的復習,為理解筆算做好準備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說明這種口算題也可以寫成豎式,用筆算。然后,對照直觀圖說明計算時要把相同數(shù)位對齊,從個位減起的計算順序。(3)教學目標:根據(jù)教材的編排意圖以及學生的實際,我確定本課的教學目標是:使學生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計算方法,并能正確的筆算。培養(yǎng)學生知識遷移的能力和口頭表達能力,培養(yǎng)學生仔細計算的良好學習習慣。
一、說教材1、教學內(nèi)容本節(jié)課是義務(wù)教育課程標準實驗教材人教版小學數(shù)學第三冊18至19頁的內(nèi)容。它是在學生學習了20以內(nèi)的退位減法、兩位數(shù)減一位數(shù)和兩位數(shù)減整十數(shù)以及兩位數(shù)減兩位數(shù)的不退位減法筆算的基礎(chǔ)上學習的。它是以后學習多位數(shù)減法的重要基礎(chǔ)。2、教學目標(1)、知識目標:使學生在理解算理的基礎(chǔ)上初步掌握兩位數(shù)退位減法的計算方法,并能正確的進行計算。(2)、技能目標:培養(yǎng)學生的動手操作能力,發(fā)展學生的思維和語言表達能力。(3)、情感目標:通過情景的創(chuàng)設(shè),培養(yǎng)學生的愛國之情,同時讓學生在自主探索算法的基礎(chǔ)上體驗到成功的喜悅。3、教學重點:本節(jié)課的重點是理解筆算兩位數(shù)退位減的算理,能正確用豎式計算。4、教學難點:理解兩位數(shù)減兩位數(shù)退位減法的算理。
說教材內(nèi)容:本節(jié)課是小學數(shù)學第五冊第六單元多位數(shù)乘一位數(shù)中的內(nèi)容,筆算乘法是本單元的教學重點。主要解決的問題如下:筆算過程中從哪一位乘起、怎么進位和豎式的書寫格式。例2主要是解決兩位數(shù)乘一位數(shù)、個位積滿十需向十位進位的問題。由于學生是初次學習進位,例2的數(shù)字較小,主要是方便學生理解進位的道理?!拷虒W內(nèi)容:多位數(shù)乘一位數(shù)的乘法(進位)(書76頁例2)教學目標:1、初步掌握因數(shù)是一位數(shù)的進位乘法的算法。2、正確、熟練地進行計算?!菊f教學目標:這節(jié)課是學會了筆算豎式以及算理的基礎(chǔ)上進行教學的,教學目標主要有:理解進位的道理,掌握多位數(shù)乘一位數(shù)的計算方法;能正確、熟練的計算。】教學重點:正確計算兩、三位數(shù)乘一位數(shù)(進位)。教學過程:一、揭示課題:多位數(shù)乘一位數(shù)的筆算乘法(進位)
3、做練習十六第4題我用創(chuàng)設(shè)情境導入,接著讓學生用豎式計算,并提問2是哪來的。創(chuàng)設(shè)情境,激發(fā)學生興趣,使他們積極思考,主動參與,活躍課堂氣氛,輕輕輕松做數(shù)學。4、判斷題。讓學生判斷是對還是錯,并說錯在哪并改正。通過判斷,加深學生對用豎式乘法的認識。5、做拼圖題。全班合作把題完成。這道題我設(shè)計題的下面有天安門前美麗的景色。和前面文昌重建家圓相呼應(yīng)。構(gòu)成一個完整現(xiàn)實情境。通過全班合作培養(yǎng)學生的合作意識。四、課堂小結(jié)第四環(huán)節(jié):總結(jié)歸納讓學生說說今天學到了什么?在學生總結(jié)的同時,教師用規(guī)范的語言復述筆算乘法的計算的方法1、相同數(shù)位要對齊,2、從個位乘起,3、乘到哪一位上積就寫在那一位上。使學生對所學知識有一個清晰的結(jié)構(gòu)。課堂是富有生命的,說課設(shè)計畢竟不是現(xiàn)場上課,所以面對課堂上的生成我們還需要作出靈活的應(yīng)對,我想這才是我們最大的挑戰(zhàn)。
得出這樣便于口算的道理,也為幫助學生探索“兩位數(shù)乘兩位數(shù)”的豎式計算方法埋下了伏筆。與此同時也允許學生把12用他們認為更便于計算的方法進行計算。另一種是直接用豎式計算。豎式的擺法學生肯定沒問題,對于第一步如何計算也難不倒學生,關(guān)鍵是第二步、第三步,通過學生自己探索算法,讓學生弄清第二步、第三步為什么這樣寫?根據(jù)學生的匯報,強調(diào)書寫格式并板書,用個位上的2去乘24,乘得的積是表示48個一,積的末尾要和個位對齊;用十位上的1去乘24,乘得的積表示24個十,乘得積的末尾要和十位對齊(個位上的0省略不寫);最后把兩次乘得的積相加。(這樣利用遷移原理,使學生一步一步地加深對算理和算法的認識和理解,不但突出了教學重點,而且突破了教學難點。)3、教師點撥:筆算乘法時:(1)從個位乘起,先用第二個因數(shù)的個位上的數(shù)依次去乘第一個因數(shù)的每一位上的數(shù),得數(shù)末位和第一個因數(shù)的個位對齊;
一、教學內(nèi)容:兩位數(shù)減一位數(shù)和整十數(shù)(不退位)(課本第67頁)。二、教學目標:1、知識與技能:讓學生經(jīng)歷探索兩位數(shù)減一位數(shù)和整十數(shù)(不退位)的計算方法的過程,掌握計算方法,能正確地口算。2、過程與方法:讓學生經(jīng)歷自主探索、動手操作、合作交流等方式獲得新知的過程,積累數(shù)學活動的經(jīng)驗,體會數(shù)學知識與日常生活的密切聯(lián)系,增強應(yīng)用意識。3、情感態(tài)度與價值觀:進一步培養(yǎng)學生學習數(shù)學的熱情,以及積極思考、動手實踐并與同學合作學習的態(tài)度。三、教學重點:掌握兩位數(shù)減一位數(shù)和整十數(shù)(不退位)的口算方法。四、教學難點:理解算理,把握兩位數(shù)減一位數(shù)與兩位數(shù)減整十位數(shù)在計算過程中的相同點與不同點。五、教具準備:課件、題卡、等。六、教學過程:(一)、創(chuàng)設(shè)情境,提出問題。
二、互動交流,理解算法1.出示教科書第22頁的情境圖,提問:他們在干什么?你獲得了什么信息?能提出什么問題?怎樣列式?2.師:今天我們就學習一位數(shù)除三位數(shù)的計算方法。(板書課題:一位數(shù)除三位數(shù))3.師:怎樣計算238÷6呢?你能用估算的方法估計出大致結(jié)果嗎?4.學生嘗試獨立完成例3的豎式計算。師:在這道題中被除數(shù)最高位上是2個百,2個百除以6,商不夠1個百怎么辦?師:誰能說一說商3個十的3寫在商的什么位置上?為什么?教師邊板演邊說明:用除數(shù)6去乘3個十,積是18個十,表示被除數(shù)中已經(jīng)分掉的數(shù),寫在23的下面。23減18得5,表示十位上還剩5個十。師:接下來該怎么辦?(把被除數(shù)個位上的8落下來,與十位上的5合起來繼續(xù)除。)師:最后結(jié)果是多少?5.啟發(fā)學生想一想:如果一本相冊有24頁,一本相冊能插得下這些照片嗎?2本呢?
(二)說學法指導把“學習的主動權(quán)還給學生”,倡導“自主、合作、探究”的學習方式,因而,我在教學過程中特別重視創(chuàng)造學生自主參與,合作交流的機會,充分利用學生已獲得的生活體驗,通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學生主動參與,積極思考,分析現(xiàn)象背后的哲學理論依據(jù),幫助學生樹立批判精神和創(chuàng)新意識,從而增強教學效果,讓學生在自己思維的活躍中領(lǐng)會本節(jié)課的重點難點。(三)說教學手段:我運用多媒體輔助教學,展示富有感染力的各種現(xiàn)象和場景,營造一個形象生動的課堂氣氛。三、說教學過程教學過程堅持"情境探究法",分為"導入新課——推進新課——走進生活"三個層次,環(huán)環(huán)相扣,逐步推進,幫助學生完成由感性認識到理性認識的飛躍。下面我重點簡述一下對教學過程的設(shè)計。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識是唯物辯證法的要求》是人教版教材高二《生活與哲學》第三單元第十課的第一框題,該部分的內(nèi)容實質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識》的重點和核心之一。學好這部分的知識對于學生進一步理解辯證法的思維方法,樹立創(chuàng)新意識起著重要的作用。(二)說教學目標根據(jù)課程標準和課改精神,在教學中確定如下三維目標:1、知識目標:辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識的關(guān)系,分析辯證否定的實質(zhì)是"揚棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識息息相關(guān)。
觀察實驗視頻實驗驗證師:其實大家完全可以利用身邊的器材來驗證。實驗1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放。現(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時彈簧秤示數(shù)變大是超重還是失重?迅速下放時彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時要保證在豎直方向且保持靜止或勻速實驗2、學生站在醫(yī)用體重計上,觀察下蹲和站起時秤的示數(shù)如何變化?在實驗前先讓同學們理論思考示數(shù)會如何變化再去驗證,最后再思考。(1)在上升過程中可分為兩個階段:加速上升、減速上升;下蹲過程中也可分為兩個階段:加速下降、減速下降。(2)當學生加速上升和減速下降時會出現(xiàn)超重現(xiàn)象;當學生加速下降和減速上升時會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時加速度方向向上,出現(xiàn)失重現(xiàn)象時加速度方向向下。完全失重
(四)實例探究☆力和運動的關(guān)系1、一個物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時1秒鐘,接著又把此力改為向東,大小不變,歷時1秒鐘,如此反復只改變力的方向,共歷時1分鐘,在此1分鐘內(nèi)A.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置之東B.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置C.物體時而向東運動,時而向西運動,在1分鐘末繼續(xù)向東運動D.物體一直向東運動,從不向西運動,在1分鐘末靜止于初始位置之東☆牛頓運動定律的應(yīng)用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質(zhì)量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0
教師活動:(1)組織學生回答相關(guān)結(jié)論,小組之間互相補充評價完善。教師進一步概括總結(jié)。(2)對學生的結(jié)論予以肯定并表揚優(yōu)秀的小組,對不理想的小組予以鼓勵。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實質(zhì):加速度方向向下。(4)運用多媒體展示電梯中的現(xiàn)象,引導學生在感性認識的基礎(chǔ)上進一步領(lǐng)會基本概念。4.實例應(yīng)用,結(jié)論拓展:教師活動:展示太空艙中宇航員的真實生活,引導學生應(yīng)用本節(jié)所學知識予以解答。學生活動:小組討論后形成共識。教師活動:(1)引導學生分小組回答相關(guān)問題,小組間互相完善補充,教師加以規(guī)范。(2)指定學生完成導學案中“思考與討論二”的兩個問題。
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學生能夠運用二次函數(shù)及其圖像,性質(zhì)解決實際問題. 3. 滲透數(shù)形結(jié)合思想,進一步培養(yǎng)學生綜合解題能力。數(shù)學學科素養(yǎng)1.數(shù)學抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學建模:運用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
問題導學類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼担蟪龃穗p曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.