課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結(jié)的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內(nèi)容 調(diào)整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設(shè)備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設(shè)計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設(shè)情境 興趣導入 【知識回顧】 初中我們曾經(jīng)學習過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內(nèi)的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內(nèi)數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學生 分析 25
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數(shù)學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數(shù)學期末考試成績是總體,每一個學生的數(shù)學期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強調(diào) 引領(lǐng) 觀察 思考 主動 求解 通過例題進一步領(lǐng)會 35
方法總結(jié):對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結(jié)論的嚴密性.
教學目標1、知識目標:掌握等式的性質(zhì);會運用等式的性質(zhì)解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數(shù)學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數(shù)學學習活動的意識和情感,敢于面對數(shù)學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質(zhì)。難點:應用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學時數(shù) 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設(shè)情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)
授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅(qū)動法 小組合作學習法 教學參考及教具(含多媒體教學設(shè)備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設(shè)計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學生了解柱、錐、球的側(cè)面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。
課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎(chǔ)上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設(shè) 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學生 分析 引導 式啟 發(fā)學 生得 出結(jié) 果 10
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學生 分析 引導 式啟 發(fā)學 生得 出結(jié) 果 10
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設(shè)計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設(shè)情境 興趣導入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關(guān)系的兩條直線? 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 2*動腦思考 探索新知 在同一個平面內(nèi)的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個平面內(nèi)的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關(guān)系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實物圖) 受實驗的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關(guān)系. 講解 說明 引領(lǐng) 分析 仔細 分析 關(guān)鍵 語句 思考 理解 記憶 帶領(lǐng) 學生 分析 5
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設(shè)情境 興趣導入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點P,過點P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經(jīng)常取一條直線與過另一條直線的平面的交點作為點(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領(lǐng) 分析 仔細 分析 關(guān)鍵 語句 思考 理解 記憶 帶領(lǐng) 學生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因為 ∥,所以為異面直線與所成的角.即所求角為. (2)因為∥,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強調(diào) 引領(lǐng) 講解 說明 觀察 思考 主動 求解 通過例題進一步領(lǐng)會 17
(四)引導觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)(2)培養(yǎng)學生觀察--探索--抽象--概括的能力。2.教學安排(1)提出問題:通過驗證這兩組分數(shù)確實相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學生的觀察結(jié)果是什么,教師要順應學生的思維,針對學生的觀察方法,進行引導性評價①觀察角度的獨特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導學生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導層次三:用自己的話把你觀察到的規(guī)律概括出來。
一、說教材1、教材所處的地位和作用:《比的基本性質(zhì)》是小學數(shù)學人教版六年級上冊第三單元第三小節(jié)比和比的應用的第二課時。它是在學生學習商不變性質(zhì)、分數(shù)的基本性質(zhì)、比的意義、比和除法的關(guān)系、比和分數(shù)的關(guān)系的基礎(chǔ)上組織教學的。比的基本性質(zhì)是一節(jié)概念課的教學,它跟分數(shù)的基本性質(zhì)、商不變性質(zhì)實際上是同一道理的。所以本節(jié)課主要是處理新舊知識間的聯(lián)系,在鞏固舊知識的基礎(chǔ)上進入到學習新知識。教材內(nèi)容滲透著事物之間是普遍聯(lián)系和互相轉(zhuǎn)化的辯證唯物主義觀點。學生理解并掌握比的基本性質(zhì),不但能加深對商不變性質(zhì)、分數(shù)的基本性質(zhì)、比的意義、比和分數(shù)、比和除法等知識的理解與掌握,而且也為以后學習比的應用,比例知識,正、反比例打好基礎(chǔ)。
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學習不等式的解和解集,利用數(shù)軸表示不等式的解,讓學生體會到數(shù)形結(jié)合的思想的應用,能夠直觀的理解不等式的解和解集的概念,為接下來的學習打下基礎(chǔ).在課堂教學中,要始終以學生為主體,以引導的方式鼓勵學生自己探究未知,提高學生的自我學習能力.
本人所教的兩個班級學生普遍存在著數(shù)學科基礎(chǔ)知識較為薄弱,計算能力較差,綜合能力不強,對數(shù)學學習有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識到自己的不足,對數(shù)學課的學習興趣高,積極性強。 學生在學習交往上表現(xiàn)為個別化學習,課堂上較為依賴老師的引導。學生的群體性小組交流能力與協(xié)同討論學習的能力不強,對學習資源和知識信息的獲取、加工、處理和綜合的能力較低。在教學中盡量分析細致,減少跨度較大的環(huán)節(jié),對重要的推導過程采用板書方式逐步進行,力求讓絕大多數(shù)學生接受。 1.理解橢圓標準方程的推導;掌握橢圓的標準方程;會根據(jù)條件求橢圓的標準方程,會根據(jù)橢圓的標準方程求焦點坐標. 2.通過橢圓圖形的研究和標準方程的討論,使學生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用。 1.讓學生經(jīng)歷橢圓標準方程的推導過程,進一步掌握求曲線方程的一般方法,體會數(shù)形結(jié)合等數(shù)學思想;培養(yǎng)學生運用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學生運用數(shù)形結(jié)合的思想,進一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質(zhì)的對比來提高學生聯(lián)想、類比、歸納的能力,解決一些實際問題。 1.通過具體的情境感知研究橢圓標準方程的必要性和實際意義;體會數(shù)學的對稱美、簡潔美,培養(yǎng)學生的審美情趣,形成學習數(shù)學知識的積極態(tài)度. 2.進一步理解并掌握代數(shù)知識在解析幾何運算中的作用,提高解方程組和計算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質(zhì)。幫助學生建立勇于探索創(chuàng)新的精神和克服困難的信心。
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
一、教學目標(一)知識教育點使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.(二)能力訓練點要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.(三)學科滲透點通過一個簡單實驗引入拋物線的定義,可以對學生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標準方程.2.難點:拋物線的標準方程的推導.三、活動設(shè)計提問、回顧、實驗、講解、板演、歸納表格.四、教學過程(一)導出課題我們已學習了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學習第四種圓錐曲線——拋物線,以及它的定義和標準方程.課題是“拋物線及其標準方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。