(六)說教學(xué)策略1.專題性海量的媒介信息必須加以選擇或者整合,以項(xiàng)目為依據(jù),進(jìn)行信息篩選,形成專題性閱讀與交流;培養(yǎng)學(xué)生對(duì)文本信息“化零為整”的能力,提升跨媒介閱讀與交流學(xué)習(xí)的充實(shí)感。2.情境化情境教學(xué)應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時(shí)代氣息的內(nèi)容,與生活經(jīng)驗(yàn)更加貼合,對(duì)學(xué)生的語言建構(gòu)與運(yùn)用有所提升,在情境中能夠有效地進(jìn)行交流。3.任務(wù)化以任務(wù)為導(dǎo)向的序列化學(xué)習(xí),可以為學(xué)生構(gòu)建學(xué)習(xí)路線圖、學(xué)習(xí)框架等具體任務(wù)引導(dǎo);或以跨媒介的認(rèn)識(shí)與應(yīng)用為任務(wù)的設(shè)置引導(dǎo);甚至以閱讀和交流作為序列化安排的實(shí)踐引導(dǎo)。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實(shí)現(xiàn)對(duì)信息進(jìn)行“深加工”,多種媒介的信息整合只為一個(gè)核心教學(xué)內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容立體化和具體化的感悟,提升學(xué)生的審美能力。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說明了什么道理?
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級(jí)女生第25,50,75百分位數(shù)。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對(duì)邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號(hào)語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點(diǎn)O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會(huì)太遠(yuǎn);相反,如果射擊的成績波動(dòng)幅度很大,那么大多數(shù)的射擊成績離平均成績會(huì)比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動(dòng)幅度。
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對(duì)應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對(duì)斜二測方法進(jìn)行舉例:對(duì)于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對(duì)稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
二、說學(xué)情本課的教學(xué)對(duì)象為高二學(xué)生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實(shí)生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對(duì)他們進(jìn)行指導(dǎo),以免走入誤區(qū)。三、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)、教材特點(diǎn)、學(xué)生的實(shí)際,我確定了如下教學(xué)目標(biāo):【知識(shí)與能力目標(biāo)】1.理解文化創(chuàng)新的根本途徑和兩個(gè)基本途徑;2.了解文化創(chuàng)新過程中需要堅(jiān)持正確方向,克服錯(cuò)誤傾向。
3、討論問題二:我國、我市人口增長對(duì)環(huán)境有那些影響?教師:讓第三、第四組學(xué)生分別介紹、展示課前調(diào)查到的資料,說明人口增長對(duì)我國環(huán)境的影響、對(duì)三亞市環(huán)境的影響。學(xué)生:第三組學(xué)生派代表介紹人口增長過快對(duì)我國生態(tài)環(huán)境的影響。第四小組由學(xué)生自己主持“我市人口增長過快對(duì)三亞市生態(tài)環(huán)境的影響”討論會(huì),匯報(bào)課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學(xué)生討論、補(bǔ)充和完善。學(xué)生:觀察老師投影圖片并進(jìn)行討論,對(duì)圖片問題進(jìn)行補(bǔ)充和完善。教學(xué)意圖:通過讓學(xué)生匯報(bào)、觀察、主持,能讓學(xué)生親身體驗(yàn),更深刻地理解人口增長對(duì)生態(tài)環(huán)境的影響,培養(yǎng)和提高學(xué)生的表達(dá)能力、觀察能力、主持會(huì)議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學(xué)生進(jìn)行匯報(bào)課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學(xué)生:展示課件、圖片,匯報(bào)調(diào)查到的情況,提出合理建議。
(3)師生討論,提升思維深度。教師引領(lǐng)學(xué)生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問題,提升了學(xué)生思維的深度。(4)角色體驗(yàn),突破難點(diǎn)落實(shí)重點(diǎn)。在農(nóng)民與保護(hù)區(qū)工作人員的角色體驗(yàn)活動(dòng)中,學(xué)生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認(rèn)識(shí)環(huán)境保護(hù)與區(qū)域經(jīng)濟(jì)發(fā)展的關(guān)系,在情感體驗(yàn)中加深對(duì)可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計(jì)的創(chuàng)新之處。2.注重對(duì)地理問題的探究,突出地理學(xué)科本質(zhì)。地理學(xué)科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學(xué)中應(yīng)該把握的基本特征,也是我們應(yīng)當(dāng)把握的地理學(xué)科的本質(zhì)特征,因此在本節(jié)課的設(shè)計(jì)中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學(xué)科的本質(zhì)。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識(shí)是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實(shí)質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識(shí)》的重點(diǎn)和核心之一。學(xué)好這部分的知識(shí)對(duì)于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識(shí)起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識(shí)目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識(shí)和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識(shí)的關(guān)系,分析辯證否定的實(shí)質(zhì)是"揚(yáng)棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識(shí)息息相關(guān)。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.