解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數(shù),所以A2015的坐標為(-504,504).故填(-504,504).方法總結:解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學學習的好奇心與求知欲.教學過程中學生能積極參與數(shù)學學習活動,積極交流合作,體驗數(shù)學活動的樂趣.
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數(shù)學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學活動的經驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
1.舉例說明什么時候用普查的方式獲得數(shù)據(jù)較好,什么時候用抽樣調查的方式獲得數(shù)據(jù)較好?2、下列調查中分別采用了那些調查方式?⑴為了了解你們班同學的身高,對全班同學進行調查.⑵為了了解你們學校學生對新教材的喜好情況,對所有學號是5的倍數(shù)的同學進行調查。3、說明在以下問題中,總體、個體、樣本各指什么?⑴為了考察一個學校的學生參加課外體育活動的情況,調查了其中20名學生每天參加課外體育活動的時間.⑵為了了解一批電池的壽命,從中抽取10只進行實驗。⑶為了考察某公園一年中每天進園的人數(shù),在其中的30天里對進園的人數(shù)進行了統(tǒng)計。通過本節(jié)課的學習,同學們有什么收獲和疑問?1、基本概念:⑴.調查、普查、抽樣調查.⑵.總體、個體、樣本.2、何時采用普查、何時采用抽樣調查,各有什么優(yōu)缺點?
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
解析:當截面與軸截面平行時,得到的截面的形狀為長方形;當截面與軸截面斜交時,得到的截面的形狀是橢圓;當截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結:用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經過圓錐頂點的平面與圓錐的側面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結:用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設計教學過程中,強調學生自主探索和合作交流,經歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學生的情感態(tài)度和價值觀.
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結:根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內各項都改變符號)去括號時要注意:1、 不要漏乘括號內的任何一項;2、若括號前面是“-”號,記住去括號后括號內各項都變號.習題訓練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
1、突出問題的應用意識.教師首先用一個學生感興趣的實際問題引人課題,然后運用算術的方法給出解答。在各環(huán)節(jié)的安排上都設計成一個個的問題,使學生能圍繞問題展開思考、討論,進行學習.2、體現(xiàn)學生的主體意識.本設計中,教師始終把學生放在主體的地位:讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數(shù)方法是數(shù)學的進步;讓學生通過合作與交流,得出問題的不同解答方法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納.3、體現(xiàn)學生思維的層次性.教師首先引導學生嘗試用算術方法解決間題,然后再逐步引導學生列出含未知數(shù)的式子,尋找相等關系列出方程.在尋找相等關系、設未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學生思維的層次性.4、滲透建模的思想.把實際間題中的數(shù)量關系用方程形式表示出來,就是建立一種數(shù)學模型,教師有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力.
兩道例題,第一道題師生共同分析,第二道題學生自己分析。部分學生在運用方程解答問題時,等量關系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過程中教師給予適當?shù)闹笇?。四、課堂小結這節(jié)課我們學習了有關打折銷售的知識,其實類似的問題我們小學也遇到過,今天在分析實際問題時又用到了列表法,通過這節(jié)課的學習,談談你在知識方面的收獲。提示學生通過對《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學習還有以往經驗,讓學生分組討論,用一元一次方程解決實際問題的一般步驟是什么?目的:讓學生進一步體會方程的作用,這里教師又提到學生的小學學習,目的是想提示學生,將今天的方程解法與小學學過的算術方法相對比。此活動的目的是使學生不再處于被動狀態(tài),而成為積極的發(fā)現(xiàn)者。
方法總結:讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結:典例關系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設計本節(jié)課從和我們的生活息息相關的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關系列一元一次方程解決與打折銷售有關的實際問題.審清題意,找出等量關系是解決問題的關鍵.另外,商品經濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關的公式解決實際問題,提高學生的數(shù)學能力.
用四舍五入法將下列各數(shù)按括號中的要求取近似數(shù).(1)0.6328(精確到0.01);(2)7.9122(精確到個位);(3)47155(精確到百位);(4)130.06(精確到0.1);(5)4602.15(精確到千位).解析:(1)把千分位上的數(shù)字2四舍五入即可;(2)把十分位上的數(shù)字9四舍五入即可;(3)先用科學記數(shù)法表示,然后把十位上的數(shù)字5四舍五入即可;(4)把百分位上的數(shù)字6四舍五入即可;(5)先用科學記數(shù)法表示,然后把百位上的數(shù)字6四舍五入即可.解:(1)0.6328≈0.63(精確到0.01);(2)7.9122≈8(精確到個位);(3)47155≈4.72×104(精確到百位);(4)130.06≈130.1(精確到0.1);(5)4602.15≈5×103(精確到千位).方法總結:按精確度找出要保留的最后一個數(shù)位,再按下一個數(shù)位上的數(shù)四舍五入即可.三、板書設計教學過程中,強調學生自主探索和合作交流,經歷觀察、操作、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,體驗教學活動的方法,發(fā)展推理能力,同時升華學生的情感態(tài)度和價值觀.
方法總結:(1)若被開方數(shù)中含有負因數(shù),則應先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.
目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內容屬于選修學習的內容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結出解多元方程的基本方法.2.作為選修課,在內容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結:檢驗數(shù)學結論具體經歷的過程是:觀察、度量、實驗→猜想歸納→結論→推理→正確結論.三、板書設計為什么,要證明)推理的意義:數(shù)學結論必須經過嚴格的論證檢驗數(shù)學結論的常用方法實驗驗證舉出反例推理證明經歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結論產生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結論的常用方法:實驗驗證、舉出反例、推理論證等.
第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經》,可以在網上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常 數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.