本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.1節(jié)《對數函數的概念》。對數函數是高中數學在指數函數之后的重要初等函數之一。對數函數與指數函數聯系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數函數,對數函數的圖象亦有其獨特的美感。學習中讓學生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數學提供了更多角度的分析方法。培養(yǎng)學生邏輯推理、數學直觀、數學抽象、和數學建模的核心素養(yǎng)。1、理解對數函數的定義,會求對數函數的定義域;2、了解對數函數與指數函數之間的聯系,培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;滲透類比等基本數學思想方法。3、在學習對數函數過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學應用的意識,感受數學、理解數學、探索數學,提高學習數學的興趣。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.2節(jié)《對數函數的圖像和性質》 是高中數學在指數函數之后的重要初等函數之一。對數函數與指數函數聯系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數函數,對數函數的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數學直觀、數學抽象、和數學建模的核心素養(yǎng)。1、掌握對數函數的圖像和性質;能利用對數函數的圖像與性質來解決簡單問題;2、經過探究對數函數的圖像和性質,對數函數與指數函數圖像之間的聯系,對數函數內部的的聯系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;滲透類比等基本數學思想方法。
本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人教A版)第三章《函數的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數的三種表示方法及其簡單應用,進一步加深對函數概念的理解。課本從引進函數概念開始就比較注重函數的不同表示方法:解析法,圖象法,列表法.函數的不同表示方法能豐富對函數的認識,幫助理解抽象的函數概念.特別是在信息技術環(huán)境下,可以使函數在形與數兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合這種重要的數學思想方法.因此,在研究函數時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據不同的需要選擇恰當的方法(解析式法、圖象法、列表法)表示函數;B.了解簡單的分段函數,并能簡單地應用;1.數學抽象:函數解析法及能由條件求函數的解析式;2.邏輯推理:求函數的解析式;
本節(jié)課選自《普通高中課程標準實驗教科書數學必修1本(A版)》的第五章的4.5.3函數模型的應用。函數模型及其應用是中學重要內容之一,又是數學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數模型的應用舉例有著不可替代的重要位置,又有重要的現實意義。本節(jié)課要求學生利用給定的函數模型或建立函數模型解決實際問題,并對給定的函數模型進行簡單的分析評價,發(fā)展學生數學建模、數學直觀、數學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數模型解決實際問題.2.了解擬合函數模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數模型的作用,提高學生數學建模,數據分析的能力. a.數學抽象:由實際問題建立函數模型;b.邏輯推理:選擇合適的函數模型;c.數學運算:運用函數模型解決實際問題;
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.3節(jié)《不同增長函數的差異》 是在學習了指數函數、對數函數和冪函數之后的對函數學習的一次梳理和總結。本節(jié)提出函數增長快慢的問題,通過函數圖像及三個函數的性質,完成函數增長快慢的認識。既是對三種函數學習的總結,也為后續(xù)導數的學習做了鋪墊。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1.了解指數函數、對數函數、冪函數 (一次函數) 的增長差異.2、經過探究對函數的圖像觀察,理解對數增長、直線上升、指數爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;3、在認識函數增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學應用的意識,探索數學。 a.數學抽象:函數增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
四、小結1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數的相關性質求值.其中三角函數最值問題是對三角函數的概念、圖像和性質,以及誘導公式、同角三角函數基本關系、和(差)角公式的綜合應用,也是函數思想的具體體現. 如何科學的把實際問題轉化成數學問題,如何選擇自變量建立數學關系式;求解三角函數在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數學關系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內容學生根據課堂學習,自主總結知識要點,及運用的思想方法。注意總結自己在學習中的易錯點;
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們取一定點O作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
客觀世界中的各種各樣的運動變化現象均可表現為變量間的對應關系,這種關系常??捎煤瘮的P蛠砻枋?,并且通過研究函數模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數關系式,初步體會應用一次函數、二次函數、冪函數、分段函數模型解決實際問題; 2、感受運用函數概念建立模型的過程和方法,體會一次函數、二次函數、冪函數、分段函數模型在數學和其他學科中的重要性. 數學學科素養(yǎng)1.數學抽象:總結函數模型; 2.邏輯推理:找出簡單實際問題中的函數關系式,根據題干信息寫出分段函數; 3.數學運算:結合函數圖象或其單調性來求最值. ; 4.數據分析:二次函數通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數學建模:在具體問題情境中,運用數形結合思想,將自然語言用數學表達式表示出來。 重點:運用一次函數、二次函數、冪函數、分段函數模型的處理實際問題;難點:運用函數思想理解和處理現實生活和社會中的簡單問題.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.
由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.
本節(jié)課是正弦函數、余弦函數圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數、余弦函數的性質. 課程目標1.了解周期函數與最小正周期的意義;2.了解三角函數的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數的周期;4.借助圖象直觀理解正、余弦函數在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數學學科素養(yǎng)1.數學抽象:理解周期函數、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數學建模:讓學生借助數形結合的思想,通過圖像探究正、余弦函數的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數、余弦函數的性質; 難點:應用正、余弦函數的性質來求含有cosx,sinx的函數的單調性、最值、值域及對稱性.
指數函數與冪函數是相通的,本節(jié)在已經學習冪函數的基礎上通過實例總結歸納指數函數的概念,通過函數的三個特征解決一些與函數概念有關的問題.課程目標1、通過實際問題了解指數函數的實際背景;2、理解指數函數的概念和意義.數學學科素養(yǎng)1.數學抽象:指數函數的概念;2.邏輯推理:用待定系數法求函數解析式及解析值;3.數學運算:利用指數函數的概念求參數;4.數學建模:通過由抽象到具體,由具體到一般的思想總結指數函數概念.重點:理解指數函數的概念和意義;難點:理解指數函數的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數有什么共同特征.要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
對數函數與指數函數是相通的,本節(jié)在已經學習指數函數的基礎上通過實例總結歸納對數函數的概念,通過函數的形式與特征解決一些與對數函數有關的問題.課程目標1、通過實際問題了解對數函數的實際背景;2、掌握對數函數的概念,并會判斷一些函數是否是對數函數. 數學學科素養(yǎng)1.數學抽象:對數函數的概念;2.邏輯推理:用待定系數法求函數解析式及解析值;3.數學運算:利用對數函數的概念求參數;4.數學建模:通過由抽象到具體,由具體到一般的思想總結對數函數概念.重點:理解對數函數的概念和意義;難點:理解對數函數的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經研究了死亡生物體內碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數嗎?
本節(jié)課是三角函數的繼續(xù),三角函數包含正弦函數、余弦函數、正切函數.而本課內容是正切函數的性質與圖像.首先根據單位圓中正切函數的定義探究其圖像,然后通過圖像研究正切函數的性質. 課程目標1、掌握利用單位圓中正切函數定義得到圖象的方法;2、能夠利用正切函數圖象準確歸納其性質并能簡單地應用.數學學科素養(yǎng)1.數學抽象:借助單位圓理解正切函數的圖像; 2.邏輯推理: 求正切函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數的圖像; 5.數學建模:讓學生借助數形結合的思想,通過圖像探究正切函數的性質. 重點:能夠利用正切函數圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數定義得到其圖象.
本節(jié)課在已學冪函數、指數函數、對數函數的增長方式存在很大差異.事實上,這種差異正是不同類型現實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數增長的差異.課程目標1.掌握常見增長函數的定義、圖象、性質,并體會其增長的快慢.2.理解直線上升、對數增長、指數爆炸的含義以及三種函數模型的性質的比較,培養(yǎng)數學建模和數學運算等核心素養(yǎng).數學學科素養(yǎng)1.數學抽象:常見增長函數的定義、圖象、性質;2.邏輯推理:三種函數的增長速度比較;3.數學運算:由函數圖像求函數解析式;4.數據分析:由圖象判斷指數函數、對數函數和冪函數;5.數學建模:通過由抽象到具體,由具體到一般的數形結合思想總結函數性質.重點:比較函數值得大??;難點:幾種增長函數模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。
本節(jié)通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。課程目標1.能利用已知函數模型求解實際問題.2.能自建確定性函數模型解決實際問題.數學學科素養(yǎng)1.數學抽象:建立函數模型,把實際應用問題轉化為數學問題;2.邏輯推理:通過數據分析,確定合適的函數模型;3.數學運算:解答數學問題,求得結果;4.數據分析:把數學結果轉譯成具體問題的結論,做出解答;5.數學建模:借助函數模型,利用函數的思想解決現實生活中的實際問題.重點:利用函數模型解決實際問題;難點:數模型的構造與對數據的處理.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。