(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標準角度為30°±1°,一名質(zhì)檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習題4.2
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應(yīng)用意識.●教學重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導.2.運用相似三角形的比例關(guān)系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關(guān)系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應(yīng)用意識.
接著引導學生進一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學生的思考經(jīng)歷由一般到特殊的過程。2.截面是其他形狀學生先猜想正方體的截面還有可能是什么形狀,再利用實驗操作型課件對正方體進行無限次的切截,讓學生在無限次切截的過程中體會截面產(chǎn)生和變化的整個過程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學生從切截活動中發(fā)現(xiàn)猜想時沒有想到的截面圖形,體會到探索的樂趣。教師再引導學生歸納正方體截面邊數(shù)的規(guī)律。學生的認知得到升華。接著引導學生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學生先猜想圓柱體的截面可能是什么形狀,教師利用實驗操作型課件對圓柱體進行無限次的切截,學生觀察截面形狀。
還有其他解法嗎?從中讓學生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導學生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.對比練習: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構(gòu).突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數(shù)式存在的普遍性;讓學生給自己構(gòu)造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學生思維的亮點,及時進行引導和激勵,并根據(jù)具體教學對象,適當調(diào)整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預(yù)設(shè)與生成齊飛.
一是先用計算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學生探索數(shù)學規(guī)律的興趣,為下面的數(shù)學探險作鋪墊。二是數(shù)學探險。在這個步驟中,我先出示8個1乘8個1,學生用計算器計算的答案肯定不一樣,因為學生帶來的計算器所能顯示的數(shù)位不一樣,而且這些計算器所能顯示的數(shù)位都不夠用,也就是這道題目計算器不能解決。這時我提問:“你覺得問題出在哪兒?是我們錯了,還是計算器錯了?你能想辦法解決嗎?請四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學生找不到更好的解決方法時,引導學生向書本請教,完成課本第101頁想想做做的第四題。讓學生利用計算器算出前5題的得數(shù),引導學生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個算式,發(fā)展學生的合情推理能力,同時也讓學生領(lǐng)略了數(shù)學的神奇。
(六)當堂達標(練習二、三 10分鐘)練習二讓學生口答,通過練習,鞏固學生對直線、射線、線段表示方法的掌握。練習三讓學生去黑板板演,教師檢驗對錯并重點強調(diào)幾何語言的表述。文字語言和圖形語言之間的轉(zhuǎn)化是難點,著重練習文字語言向圖形語言的轉(zhuǎn)化,提高幾何語言的理解與運用能力。當堂達標是檢查學習效果、鞏固知識、提高能力的重要手段。通過練習,學生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(jié)(3分鐘)教師提問“這節(jié)課我們學了哪些知識?”請學生回答,教師做適當補充。課堂小結(jié)對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學思想。因此,在小結(jié)時,教師引導學生概括本節(jié)內(nèi)容的重點。
一.學習目的和要求:1.對本章內(nèi)容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎(chǔ)知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用。難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結(jié) 交流、練習 探究 相結(jié)合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
第一單元 圓1.圓的定義:平面上的一種曲線圖形。2.將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等.3.半徑:連接圓心到圓上任意一點的線段叫作半徑。半徑一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。4.圓心確定圓的位置,半徑確定圓的大小。5.直徑:通過圓心并且兩端都在圓上的線段叫作直徑。直徑一般用字母d表示。6.在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。7.在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。8.在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r r =1/2d 用文字表示為:半徑=直徑÷2 直徑=半徑×2
◆觀察細致,描述具體。(教學重點) 師:請同學們認真讀一讀第三自然段,思考:這一段是圍繞哪句話來寫的? 生1:這個自然段是圍繞“缸里的小蝦十分有趣”這一句來寫的。 師:說得對。那么,作者是怎樣描寫小蝦的有趣的? 生2:作者用“有的……有的……有的……”這樣一個排比句寫出了小蝦在缸里不同的狀態(tài)。 生3:作者觀察了活動的小蝦和休息的小蝦不同的表現(xiàn)。 師:說得很好。那休息的小蝦和活動的小蝦有怎樣的表現(xiàn)呢? 生1:休息的小蝦受到打擾時會很生氣。作者觀察很細致,用“一張一張、一翹一翹、一突一突”這些詞語寫出了小蝦生氣時的表現(xiàn),很有趣。