一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
長城,若將其從字面上翻譯成英文,應(yīng)為“l(fā)ong wall”,但稍懂英語知識的人都知道,“長城”在英文中用法為“great wall”——偉大的城墻。那是一種特定用法。是不可更改的。因為長城這一概念已滲入國人心中、深人世界人民的心中,那是一道偉大的城墻,它在中國,它是中國的驕傲。中國萬里長城是世界上修建時間最長,工程量最大的冷兵器戰(zhàn)爭時代的國家軍事性防御工程,是中華民族的象征和驕傲。同時長城又是一座歷史的豐碑,記述著各代王朝的政治、經(jīng)濟、軍事、文化的歷史,附會著雄略的將帥和聰明工匠的事跡,也凝聚著無數(shù)戰(zhàn)士和百姓的血汗。關(guān)于長城這一教材,至今為止不知有多少幼教工作者曾經(jīng)使用。對于這樣一個孩子們耳熟能詳,老得不能再老的教材,還有必要如此大張旗鼓地拿到教學(xué)中來嗎?那么.讓我們先來挖掘一下這一教材所蘊含的教育價值吧。
一、情景激趣,引入新課現(xiàn)代心理學(xué)告訴我們,直覺、興趣是產(chǎn)生學(xué)習(xí)動力最活躍的成份,上課開始,我 (設(shè)計意圖)在信息技術(shù)課的“任務(wù)”設(shè)計中,要充分發(fā)揮多媒體計算機具有綜合處理圖形、圖像、動畫、視頻以及聲音、文字等多種信息的功能。這樣情境的意圖是激發(fā)學(xué)生對這些問題的興趣,使他們帶著激動的情緒去學(xué)習(xí)和思考。抓住這一契機,我很自然的提示課題。
【教學(xué)目標】 1.了解詩歌意象,讀出詩歌意境。2.在誦讀中理解詩人的情感,感受詩歌的藝術(shù)魅力。3.能夠在朗誦時通過重音、停連、節(jié)奏等,把握詩歌的感情基調(diào),讀出感情,讀出韻律?!窘虒W(xué)課時】1課時【教學(xué)過程】一、自由吟誦,導(dǎo)入新課師:“腹有詩書氣自華”,讀詩可以陶冶情操,豐富文化內(nèi)涵,還可以提升氣質(zhì)。大家從小就開始接觸詩歌,詩歌應(yīng)該怎樣去吟誦呢?哪位同學(xué)愿意為大家示范一下?(生朗誦詩歌)師:這位同學(xué)剛才朗誦得很好,但是還沒有將詩歌的情感完全讀出來。那么,我們該如何通過誦讀,讀出詩歌的意境、詩人的情感呢?今天,我們就一起來探討一下詩歌的吟誦方法?!驹O(shè)計意圖】活躍課堂氣氛,提高學(xué)生參與度,對于訓(xùn)練詩歌朗誦是很有必要的。以學(xué)生吟誦詩歌的方式導(dǎo)入新課,可以較大程度地激發(fā)他們的學(xué)習(xí)興趣。
2、初步培養(yǎng)觀察力和動手能力,萌發(fā)對科學(xué)活動的興趣?! ?3、養(yǎng)成自己整理鞋子的良好習(xí)慣?! ?重點:按鞋子的大小、顏色、款式等特點進行配對?! ?難點:尋找鞋底的秘密,特別是形狀:兩頭大中間向里凹,但兩只鞋子的朝向是相反的?!? 二、活動準備: 1、與幼兒人數(shù)相近的大小、顏色、款式各異的鞋子散落放在鞋架上,用布先遮起來,人手一張白紙。 2 、歡快的音樂一段。 3、半圓形的座位安排,中間留有空地,便于活動?! ?三、活動過程 (一)奇怪的鞋子 1、教師以故事的形式引出:娃娃家里的寶寶呀,特別愛漂亮,她每天都要換一雙新鞋子,所以她的鞋子特別多,最后,連她自己都分不清哪兩只是一雙了,有一天他穿了一雙很特別的鞋子,一只是大的紅鞋子,一只是小一點兒的花鞋子(教師邊講邊出示兩只鞋子),可是這一天,她非常不開心,你們知道她為什么不開心嗎?(幼兒猜測,引導(dǎo)幼兒發(fā)現(xiàn)兩只鞋子的不同) 2、教師小結(jié):兩只大小不同、形狀不同、顏色也不一樣的鞋子不是一雙,所以穿的人當然就不舒服了。 (二)我的鞋子 1、師:那我們穿的鞋子是怎樣的,它有什么特別的地方呢? 2、引導(dǎo)幼兒觀察、比較自己腳上的鞋子,鼓勵幼兒大膽地說說自己鞋子的特別之處。(著重從鞋子的外型、顏色、大小等特點來觀察) 3、師:我們穿的鞋子的大小相同,顏色一樣,款式也一模一樣。除了這些秘密外,它還有什么特別的地方呢?
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)之后的對函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長快慢的問題,通過函數(shù)圖像及三個函數(shù)的性質(zhì),完成函數(shù)增長快慢的認識。既是對三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長差異.2、經(jīng)過探究對函數(shù)的圖像觀察,理解對數(shù)增長、直線上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;3、在認識函數(shù)增長差異的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長快慢的認識;b.邏輯推理:由特殊到一般的推理;
本節(jié)課選自《普通高中課程標準數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;
一、活動目標1、欣賞圖片,感受城市、鄉(xiāng)村各具特色的美景和生活。2、在辯論活動中了解城市和農(nóng)村的不同生活方式,懂得適合自己的才是最好的。二、 活動準備:1、事先安排幼兒參觀城市或者鄉(xiāng)村,布置主題墻面的城市和鄉(xiāng)村的圖片。2、情景童話劇表演,布置場地。3、動畫制作。4、城市和鄉(xiāng)村的圖片若干張
二、活動目標:1、利用紙棒進行活動,學(xué)習(xí)跳竹竿游戲,發(fā)展彈跳能力。2、體驗與同伴合作游戲帶來的快樂。3、愿意積極想辦法解決活動中遇到的困難。三、活動準備:經(jīng)驗準備:幼兒觀看過錄像物質(zhì)準備:人手一根紙棒(長度為1米)。錄音機,磁帶。四、活動過程:1、開始部分:幼兒隨音樂利用紙棒進行隊列練習(xí)。導(dǎo)語:今天天氣真不錯,我們騎著馬出去玩玩吧?。ㄓ變弘S音樂的變化“騎馬”變雙圓----大圓----小圓---- “坐馬車” )反思:活動開始部分設(shè)計了隨音樂利用紙棒進行隊列練習(xí)在這一環(huán)節(jié)中由兩隊“騎馬”變雙圓----變小圓----合作組合“坐馬車”體現(xiàn)了動靜交替的原則,讓幼兒初步嘗試了與同伴合作的快樂,同時也為下一個環(huán)節(jié)奠定了基礎(chǔ)。2、基本部分:(1)利用紙棒進行“一棒多玩”導(dǎo)語:紙棒可以和我們玩坐馬車的游戲,還可以和我們玩什么游戲呢?我們一起來試試,可以自己玩,也可以和小伙伴一起玩。(幼兒四散游戲)隊形:兩路縱隊(見附圖)(2)學(xué)習(xí)“跳竹竿”游戲A、講解游戲玩法導(dǎo)語:剛才小朋友用紙棒玩了許多游戲,今天老師要和大家用紙棒玩一個新游戲——跳竹竿,這個游戲可以三個或四個小朋友一起玩,其中兩個小朋友手拿竹竿面對面跪下,用竹竿同時分合敲擊,另一個小朋友在中間看準竹竿的分合跳進或跳出。大家可以自己選擇小伙伴一起試一試。隊形:梯形隊(見附圖)(3)幼兒自由組合嘗試玩“跳竹竿”游戲隊形:四散(4)對幼兒在游戲過程中出現(xiàn)的情況及時進行指導(dǎo)(合作、交往方面)導(dǎo)語:你剛才和誰一起玩的?你們是怎么跳竹竿的?隊形:梯形隊(見附圖)(5)鼓勵幼兒創(chuàng)造性地玩“跳竹竿”游戲,師生共同參與。
2.發(fā)展幼兒的觀察力,培養(yǎng)幼兒簡單的推理能力?! ?.感知十二生肖所包括的12種動物、十二生肖的排列順序,感知、了解十二生肖一年一種屬相,12年一個輪回的規(guī)律?! 』顒訙蕚? 1.教具:自制生肖鐘、山洞大山的圖片?! ?.學(xué)具:蛋糕盒制作的鐘面、十二生肖的圖片.膠水等 3.知識準備:幼兒認識時鐘?! 』顒又攸c:幼兒知道十二生肖的排列順序?! 』顒与y點:知道十二生肖每12年輪回一次。 活動過程: 一、導(dǎo)入 出示生肖鐘,引出課題,激發(fā)幼兒興趣?! 《?、展開 1.了解十二生肖的12種動物,簡單的感知其排列順序,理解其含義。 ?。?)請幼兒說出鐘面上有多少種動物,為什么?我們來數(shù)一數(shù),看看是不是12種。從哪開始數(shù)呢?老鼠第一?誰第二?誰第六?小兔第幾? ?。?)小朋友當中有沒有屬“小老鼠”的?為什么說自己是屬“小老鼠”的?(引出“屬相”一詞,豐富幼兒詞匯)小朋友還知道有什么屬相?
2、培養(yǎng)按數(shù)量歸類的能力。 3、通過游戲,提高對數(shù)學(xué)活動的興趣。 活動準備: 有1、2、3個斑點的瓢蟲圖片若干;分別粘有1、2、3個圓點的樹葉3片;小紙蟲若干;兒歌錄音:小瓢蟲。 活動過程: 一、游戲?qū)? 師幼共同玩手指游戲:小瓢蟲。 二、利用圖片,練習(xí)手口一致數(shù)3以內(nèi)的數(shù)。 通過數(shù)瓢蟲身上的斑點及瓢蟲數(shù),鞏固數(shù)數(shù)1、2、3。
提問:結(jié)合課本找出城市地域結(jié)構(gòu)模式的類型及各自特點,模式形成的因素又有哪些?學(xué)生回答,使其掌握基本模式及特點,通過對比,分析把握每一模式各自的特征,學(xué)會把握事物本質(zhì)?!粼O(shè)計意圖:閱讀課本,總結(jié)歸納,同時引導(dǎo),通過原因規(guī)律的探究,大膽設(shè)想,總結(jié)規(guī)律掌握人文地理學(xué)習(xí)思路。4.活動設(shè)計:內(nèi)部空間結(jié)構(gòu)變化,結(jié)合實例,分析說明。提問:結(jié)合江寧區(qū)的變化,分析江寧區(qū)城市結(jié)構(gòu)發(fā)生了哪些變化?結(jié)合課本24頁活動題,提出功能結(jié)構(gòu)布局方案?通過理論聯(lián)系實際,讓學(xué)生更好理解理論,掌握城市結(jié)構(gòu)布局的變化及其影響因素,通過活動題方案的提出,學(xué)生能夠掌握布局的規(guī)律性,解決問題。設(shè)計意圖:理論聯(lián)系實際,知識的不枯燥性,提高學(xué)生學(xué)習(xí)興趣。同時,能夠通過總結(jié),深層次認識城市結(jié)構(gòu)布局,活學(xué)活用。
②內(nèi)燃機的發(fā)明推動了交通運輸領(lǐng)域的革新。19世紀末,新型的交通工具——汽車出現(xiàn)了。1885年,德國人卡爾·本茨成功地制成了第一輛用汽油內(nèi)燃機驅(qū)動的汽車。1896年,美國人亨利·福特制造出他的第一輛四輪汽車。與此同時,許多國家都開始建立汽車工業(yè)。隨后,以內(nèi)燃機為動力的內(nèi)燃機車、遠洋輪船、飛機等也不斷涌現(xiàn)出來。1903年,美國人萊特兄弟制造的飛機試飛成功,實現(xiàn)了人類翱翔天空的夢想,預(yù)告了交通運輸新紀元的到來。③內(nèi)燃機的發(fā)明推動了石油開采業(yè)的發(fā)展和石油化學(xué)工業(yè)的產(chǎn)生。石油也像電力一樣成為一種極為重要的新能源。1870年,全世界開采的石油只有80萬噸,到1900年猛增至2 000萬噸。(3)化學(xué)工業(yè)的發(fā)展:①無機化學(xué)工業(yè):用化學(xué)反應(yīng)的方式開始從煤焦油中提煉氨、笨、等,用化學(xué)合成的方式,美國人發(fā)明了塑料,法國人發(fā)明了纖維,瑞典人發(fā)明了炸藥等。
2、獨立將三幅圖連起來,表達其中的含義,運用正確的詞匯表達圖意。 3、敢于克服膽怯的心理,大膽回答問題?;顒訙蕚洌?、教具:有關(guān)4的減法圖三幅?! ?2、學(xué)具:幼兒用書,鉛筆?;顒舆^程:1、集體活動?! ?(1)游戲“看誰說得快”?! ?教師提出要與幼兒玩游戲,隨后講一講游戲規(guī)則:教師說一個數(shù)字,請幼兒說出它后面的一個數(shù)字。教師報數(shù),全體幼兒嘗試回答,當全體幼兒玩的比較熟練后,可以與小組的幼兒玩?! ?教師說出游戲的另一個規(guī)則:教師說一個數(shù)字,幼兒說出它前面的一個數(shù)字。教師報數(shù),全體幼兒嘗試回答。
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個?能被5整除的有多少個?(2)這些四位數(shù)中大于6 500的有多少個?解:(1)偶數(shù)的個位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個);能被5整除的數(shù)個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個).