本節(jié)通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;
1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
教學(xué)目標1、明確扇形統(tǒng)計圖的制作步驟,能夠根據(jù)相關(guān)數(shù)據(jù)較為準確地制作扇形統(tǒng)計圖.2、進一步理解扇形統(tǒng)計圖的特點,建立百分比大小和扇形圓心角大小之間初步的直觀敏感度.3、能夠?qū)崿F(xiàn)不同統(tǒng)計圖數(shù)據(jù)間的合理轉(zhuǎn)換,再次體會幾種統(tǒng)計圖的不同特點,為合理選擇統(tǒng)計圖表示數(shù)據(jù)打下一定的基礎(chǔ).4、通過實例,理解三種統(tǒng)計圖的特點,能根據(jù)具體問題選擇合適的統(tǒng)計圖清晰、有效地描述數(shù)據(jù).5、在統(tǒng)計活動的過程中,通過相互間的合作與交流,掌握畫統(tǒng)計圖和選擇統(tǒng)計圖的方法;經(jīng)歷數(shù)據(jù)的收集、整理和簡單分析、作出決策的統(tǒng)計活動過程,發(fā)展統(tǒng)計觀念.6、通過對現(xiàn)實生活中的數(shù)據(jù)分析,感受數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,說出統(tǒng)計圖在現(xiàn)實生活中的應(yīng)用,提高學(xué)習(xí)數(shù)學(xué)興趣.
小學(xué)五年級的學(xué)生應(yīng)該具備一些生活技能, 學(xué)做家常菜是我們生活的必需,是每個,人都應(yīng)該掌握的生存技能。本主題的目的通過學(xué)習(xí)做簡單的家常菜,引領(lǐng)小學(xué)生走進家務(wù)勞動,鍛煉生活的自理能力和提高適應(yīng)生活的能力,體會生活和學(xué)習(xí)的樂趣,激發(fā)學(xué)生將學(xué)校學(xué)習(xí)和家務(wù)勞動密切結(jié)合起來,形成積極的生活和學(xué)習(xí)的態(tài)度。本主題安排了“問題與思考”“學(xué)習(xí)與探究”“實踐與體驗”總結(jié)與交流“拓展與創(chuàng)新”五個環(huán)節(jié),從提出問題開始,到探究與體驗,最后到學(xué)有所用,循序漸進,引導(dǎo)學(xué)習(xí)走進中式餐飲文化,學(xué)做日常生活中的家常菜,掌握勞動的技能和方法,體驗做家務(wù)勞動帶來的快樂和享受,激發(fā)學(xué)生對家常菜的探究與實踐的興趣,逐步掌握日常生活所需的基本技能,培養(yǎng)熱愛勞動、熱愛生活的意識。
(一)、創(chuàng)設(shè)情景,導(dǎo)入新課摸牌游戲:三位同學(xué)持三組牌,指定三位同學(xué)分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學(xué)根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況。總結(jié):在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。
教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動的機會,倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,鼓勵學(xué)生自主探索與合作交流,讓學(xué)生在實踐中體驗、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動手操作、觀察、討論的方式,一方面能夠直觀、生動地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點、突破難點,更好地提高課堂效率。學(xué)法分析:初二年級學(xué)習(xí)對新事物比較敏感,通過新課程教學(xué)的實施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動手實驗;三要把自己的所思所想大膽地進行交流,從而得出正確的結(jié)論,并掌握知識。
教師活動 學(xué)生活動設(shè)計意圖 情境導(dǎo)入:教師配樂敘述詩歌創(chuàng)作背景投入傾聽 盡可能調(diào)動學(xué)生情緒誦讀入境:“讀李詩者于雄快之中得其深遠宕逸之神,才是謫仙人面目”(投影展示)教師范讀,醞釀情感(播放配樂)1、學(xué)生自讀感知詩韻 2、學(xué)生齊讀進入詩境 調(diào)動學(xué)生積極性,誦讀時用自己的情緒感染學(xué)生精讀涵詠:教師就詩歌內(nèi)容進行提問,李白怎樣喝酒,勸朋友喝酒的方式、原因,他有那些愁并說明理由,并按照自己的理解誦讀。教師必要時給出相應(yīng)的提示。投影展示:人生苦短 懷才不遇 交流研討誦讀 引導(dǎo)學(xué)生從詩句入手,疏通詩意,把握情感
(一)知識與能力 1、指導(dǎo)學(xué)生基本掌握誦讀本詩的要領(lǐng),培養(yǎng)學(xué)生聲情并茂、準確傳達情感的誦讀能力. 2、幫助學(xué)生初步了解“初讀—精讀—悟讀—美讀”的詩歌鑒賞方法,培養(yǎng)學(xué)生鑒賞古典詩歌的能力。(二)、情感態(tài)度與價值觀 1、走近李白的激情、浪漫、詩性和放達,感受全詩恢宏的氣魄。 2、激發(fā)學(xué)生與文本、文人和文化的親近之情
四個同學(xué)為一個合作小組;每個小組利用教師為其準備的各類三角形,作出它們的高.比一比,看哪一個小組做得最快,發(fā)現(xiàn)的結(jié)論多. 師生行為:學(xué)生操作、討論,教師巡視、指導(dǎo),使學(xué)生理解【設(shè)計意圖】通過讓學(xué)生操作、觀察、推理、交流等活動,來培養(yǎng)學(xué)生的動手、動腦能力,發(fā)展其空間觀察.活動結(jié)論:1.銳角三角形的三條高都在三角形內(nèi); 2.直角三角形的一條高在三角形內(nèi)(即斜邊上的高),而另兩條高恰是它的兩條直角邊; 3.鈍角三角形的一條高在三角形內(nèi),而另兩條高在三角形外.(這是難點,需多加說明) 總之:任何三角形都有三條高,且三條高所在的直線相交于一點.(我們把這一點叫垂心)課堂小結(jié) 1.三角形中三條重要線段:三角形的高、中線和角平分線的概念. 2.學(xué)會畫三角形的高、中線和角平分線.
我們不妨將主旨放在“莊生曉夢迷蝴蝶,望帝春心托杜鵑。滄海月明珠有淚,藍田日暖玉生煙?!倍?lián)之前,那么,事情就變得簡單起來了:華年如莊生曉夢迷蝴蝶;華年如望帝春心托杜鵑;華年如滄海月明珠有淚;華年如藍田日暖玉生煙。從課下注釋,我們很容易就可以看出,這四句每一句都在用典。因此,我們通過對典故的解讀,然后加以整理,將其理順,似乎就可以完成對詩歌內(nèi)容的解讀;至于什么悼亡、愛情,不妨拋之腦后,畢竟,沒有那些其他的主題,也并沒有讓詩歌失色,而加上這些捉摸不定的主題,只是讓詩歌增加了所謂的神秘色彩,徒增閱讀難度而已。
中班的幼兒開始愿意探究新異的事物或現(xiàn)象來滿足自己的好奇心,所以,我們的科學(xué)活動設(shè)計要在淺顯易懂,適合中班幼兒年齡特征的同時,引發(fā)幼兒對科學(xué)的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們在設(shè)計科學(xué)活動時要讓幼兒充分發(fā)揮想象,對磁鐵這種“新異”事物提出問題,如什么是磁鐵?什么時候看見過磁鐵?等等類似的問題,可以增強幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力?! ≈邪嘤變褐饕跃唧w形象為主,需要具體的活動場景和活動形式,所以活動設(shè)計要提供幼兒合適的情景以提供操作思考的機會,進一步發(fā)展幼兒的自主性和主動性。中班幼兒與小班幼兒相比,活動時間也有所增加,因此也需要在活動時間上給予一定的保證。
《錦瑟》的主旨頗多,悼亡、戀情、自傷身世,每一種都有其支持者的長篇論述,但其首聯(lián)中“一弦一柱思華年?!睆倪@個角度來看,似乎將主題定調(diào)為對“華年”的追思,似乎更為妥帖。當我們有了一個明確的基調(diào)之后,后面幾聯(lián)在解讀時就有了一個準確的方向。
活動內(nèi)容:教師首先讓學(xué)生回顧學(xué)過的三類事件,接著讓學(xué)生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認為正面朝上和正面朝下的可能性相同嗎?(讓學(xué)生體驗數(shù)學(xué)來源于生活)。活動目的:使學(xué)生回顧學(xué)過的三類事件,并由擲硬幣游戲培養(yǎng)學(xué)生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學(xué)生體會猜測結(jié)果,這是很重要的一步,我們所學(xué)到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點,教師補充。 讓學(xué)生掌握本節(jié)課知識點,并能夠靈活運用。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點:應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運算:五點作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關(guān),且相關(guān)程度很強。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點圖相比較,線性相關(guān)系數(shù)要精細得多,需要注意的是線性相關(guān)系數(shù)r的絕對值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗線性相關(guān)顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢的異同.