方法總結:(1)若被開方數中含有負因數,則應先化成正因數,如(3)題.(2)將二次根式盡量化簡,使被開方數(式)中不含能開得盡方的因數(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數是否還有分母,是否還有能開得盡方的因數或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯系,加深學生對運算法則的理解,能否根據問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據題意可得到兩個相等關系:(1)1元賀卡張數+2元賀卡張數=8(張);(2)1元賀卡錢數+2元賀卡錢數=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數,即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數學模型,學會逐步掌握基本的數學知識和方法,形成良好的數學思維習慣和應用意識,提高解決問題的能力,感受數學創(chuàng)造的樂趣,增進學好數學的信心,增加對數學較全面的體驗和理解.
方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯系起來,再利用勾股定理找到圖形面積之間的等量關系.
探究點二:勾股定理的簡單運用如圖,高速公路的同側有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結:解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數形結合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數學解決實際問題的能力,為后面的學習打下基礎.
解:設甲班的人數為x人,乙班的人數為y人,根據題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數為48人,乙班的人數為45人.方法總結:設未知數時,一般是求什么,設什么,并且所列方程的個數與未知數的個數相等.解這類問題的應用題,要抓住題中反映數量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數學問題情景,學生體會到數學中的“趣”;進一步強調數學與生活的聯系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數字規(guī)律,提高推理能力.一、情境導入前面我們通過平方和立方運算求出一些特殊數的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結果為:9.449489743.方法總結:當被開方數不是一個數時,輸入時一定要按鍵.解本題時常出現的錯誤是:■6+7=SD,錯的原因是被開方數是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導致錯誤.K探究點二:利用科學計算器比較數的大小利用計算器,比較下列各組數的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結果為1.414213562.按鍵順序:SHIFT■5=,顯示結果為1.709975947.所以2<35.
解析:從各點的位置可以發(fā)現A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數,所以A2015的坐標為(-504,504).故填(-504,504).方法總結:解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結出一般規(guī)律,再根據一般規(guī)律探究特殊情況.三、板書設計軸對稱與坐標變化關于坐標軸對稱作圖——軸對稱變換通過本課時的學習,學生經歷圖形坐標變化與圖形的軸對稱之間的關系的探索過程,掌握空間與圖形的基礎知識和基本作圖技能,豐富對現實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數學學習的好奇心與求知欲.教學過程中學生能積極參與數學學習活動,積極交流合作,體驗數學活動的樂趣.
判斷下面抽樣調查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質量情況,先隨機抽取若干箱(捆),再在抽取的每箱(捆)中,隨機抽取1~2瓶檢查;(2)通過網上問卷調查方式,了解百姓對央視春節(jié)晚會的評價;(3)調查某市中小學生學習負擔的狀況,在該市每所小學的每個班級選取一名學生,進行問卷調查;(4)教育部為了調查中小學亂收費情況,調查了某市所有中小學生.解析:本題應看樣本是否為簡單隨機樣本,是否具有代表性.解:(1)合適,這是一種隨機抽樣的方法,樣本為簡單隨機樣本.(2)不合適,我國農村人口眾多,多數農民是不上網的,所以調查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應在全國范圍內分層選取樣本,除了上述原因外,每班的學生全部作為樣本是沒有必要的.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
最后我引導學生觀察自己手中的量角器引導學生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進而明白度分秒之間的轉換關系,并且引導學生對比和度分秒進制一樣的還有時間。從而進入到例題2的講解。接下來讓學生通過隨堂練習來加強和鞏固本節(jié)課的內容。提高學生對本節(jié)課知識的系統綜合。(四)歸納總結。小結主要由學生完成,我作出適當的補充。最后總結角的比較表方法及估測和某些角之間的等量關系的書寫基本的幾何語句并能根據語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學生學習效果,調整教學安排。使學生通過獨立思考,自我評價學習效果;學會反思,發(fā)現問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數的第四比例項,也可能不是前三個數的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數成比例,則應滿足其中兩個數的比等于另外兩個數的比,也可轉化為其中兩個數的乘積恰好等于另外兩個數的乘積.
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數值可以算是1000+(2000-1000)×0.618= 1618.試驗的結果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數據.這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數找到最佳的數據,既節(jié)省了時間,也節(jié)約了原材料.●板書設計
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
(1)請你用代數式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據梯形面積=12(上底+下底)×高,即可用含有a、b的代數式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數式中,其結果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結:解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數式運算在判斷和推理上的意義,增強學生學習數學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎.
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結:如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數乘法的運算律的實際應用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結:解答本題的關鍵是根據題意列出算式,然后根據乘法的分配律進行簡便計算.新課程理念要求把學生“學”數學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經歷積極探索知識的形成過程,最后總結得出有理數乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結合,教師適當點評,以達到預期的教學效果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當m=6時,原式=06-1+6=5;(2)當m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結:解答此題的關鍵是先根據題意得出a+b=0,cd=1及m=±6,再代入所求代數式進行計算.探究點三:有理數乘法的應用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據有理數的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結:解此題的關鍵是根據題意列出算式,計算出結果,比較得出最省的付錢方案.
解析:∵ab>0,根據“兩數相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數.故選D.方法總結:此題考查了有理數乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數字不復雜的情況下直接運用除法法則求解.(2)在多個有理數進行除法運算,或者是乘、除混合運算時應該把除法轉化為乘法,然后統一用乘法的運算律解決問題.
方法總結:股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據題意準確列出算式也是解題的關鍵.三、板書設計加法法則(1)同號兩數相加,取與加數相同的符號,把絕對 值相加.(2)異號兩數相加,取絕對值較大加數的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數的兩數相加得0.(4)一個數同0相加,仍得這個數.本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.