提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中歷史必修3文藝復興和宗教改革教案

  • 兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關(guān)系教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    空間向量基本定理教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結(jié)合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個正交基底.

  • 點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設(shè)計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 第四單元《教學設(shè)計》 說課稿  2021—2022學年統(tǒng)編版高中語文必修下冊

    第四單元《教學設(shè)計》 說課稿 2021—2022學年統(tǒng)編版高中語文必修下冊

    (六)說教學策略1.專題性海量的媒介信息必須加以選擇或者整合,以項目為依據(jù),進行信息篩選,形成專題性閱讀與交流;培養(yǎng)學生對文本信息“化零為整”的能力,提升跨媒介閱讀與交流學習的充實感。2.情境化情境教學應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時代氣息的內(nèi)容,與生活經(jīng)驗更加貼合,對學生的語言建構(gòu)與運用有所提升,在情境中能夠有效地進行交流。3.任務(wù)化以任務(wù)為導向的序列化學習,可以為學生構(gòu)建學習路線圖、學習框架等具體任務(wù)引導;或以跨媒介的認識與應(yīng)用為任務(wù)的設(shè)置引導;甚至以閱讀和交流作為序列化安排的實踐引導。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實現(xiàn)對信息進行“深加工”,多種媒介的信息整合只為一個核心教學內(nèi)容服務(wù)。5.互文性語言文字是語文之生命,我們是立足于語言文字的探討,音樂、圖像、視頻等文本與傳統(tǒng)語言文字文本形成互文,觸發(fā)學生對學習內(nèi)容立體化和具體化的感悟,提升學生的審美能力。

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設(shè)計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.

  • 人教版高中生物必修3第六章第一節(jié)《人口增長對生態(tài)環(huán)境的影響》說課稿

    人教版高中生物必修3第六章第一節(jié)《人口增長對生態(tài)環(huán)境的影響》說課稿

    3、討論問題二:我國、我市人口增長對環(huán)境有那些影響?教師:讓第三、第四組學生分別介紹、展示課前調(diào)查到的資料,說明人口增長對我國環(huán)境的影響、對三亞市環(huán)境的影響。學生:第三組學生派代表介紹人口增長過快對我國生態(tài)環(huán)境的影響。第四小組由學生自己主持“我市人口增長過快對三亞市生態(tài)環(huán)境的影響”討論會,匯報課前調(diào)查到的資料和討論,其它小組參與發(fā)言。教師:投影:課本圖6-2組織學生討論、補充和完善。學生:觀察老師投影圖片并進行討論,對圖片問題進行補充和完善。教學意圖:通過讓學生匯報、觀察、主持,能讓學生親身體驗,更深刻地理解人口增長對生態(tài)環(huán)境的影響,培養(yǎng)和提高學生的表達能力、觀察能力、主持會議的能力。4、討論問題三:怎樣協(xié)調(diào)人與環(huán)境的關(guān)系?教師:組織第五組學生進行匯報課前調(diào)查到的資料,交流、討論、發(fā)表意見和見解。學生:展示課件、圖片,匯報調(diào)查到的情況,提出合理建議。

  • 人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    通過列表對比法、歸納法、、多媒體輔助法等教學方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學生更是學會運用圖表方法、高效記憶法、合作學習法等方法學習地理知識,增加學習能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學的區(qū)域地理環(huán)境研究。學生的年齡和認知范圍決定,此部分的案例教學的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點和具體應(yīng)用。而后者涉及地理學科的綜合性和區(qū)域性的特點,難度較大。針對學情特點,我多以前者案例入手學習,以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用

  • 人教版高中地理必修3區(qū)域工業(yè)化與城市化—以我國珠江三角洲地區(qū)為例說課稿

    人教版高中地理必修3區(qū)域工業(yè)化與城市化—以我國珠江三角洲地區(qū)為例說課稿

    A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴大【設(shè)計意圖】通過讀圖的對比分析,提高學生提取信息以及對比分析問題的能力,通過小組之間的討論,培養(yǎng)合作能力。五、課堂小結(jié)和布置作業(yè)關(guān)于課堂小結(jié),我打算讓學生自己來總結(jié),你這節(jié)課學到了什么。這樣既可以提高學生的總結(jié)概括能力,也可以讓我在第一時間內(nèi)獲得它們的學習反饋。(本節(jié)課主要學習了珠三角的位置和范圍以及改革開放以來珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關(guān)于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個層次的作業(yè)是基礎(chǔ)作業(yè),要求每一位同學都掌握,第二個層次的作業(yè)是彈性作業(yè),學生可以根據(jù)自己的情況來選做。整個這堂課,老師只是作為一個引導者、組織者的角色,學生才是課堂上真正的主人,是自我意義的建構(gòu)者和知識的生成者,被動的、復制式的課堂將離我們遠去。

  • 人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    人教版高中地理必修3區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展—以我國東北地區(qū)為例說課稿

    (3)師生討論,提升思維深度。教師引領(lǐng)學生將討論由農(nóng)業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農(nóng)業(yè)結(jié)構(gòu)不合理、農(nóng)業(yè)技術(shù)落后等深層問題,提升了學生思維的深度。(4)角色體驗,突破難點落實重點。在農(nóng)民與保護區(qū)工作人員的角色體驗活動中,學生們嘗試換位思考,在沖突與交鋒中,在教師的引領(lǐng)下,重新認識環(huán)境保護與區(qū)域經(jīng)濟發(fā)展的關(guān)系,在情感體驗中加深對可持續(xù)發(fā)展內(nèi)涵的理解,小沖突凸顯大矛盾是本課設(shè)計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學科本質(zhì)。地理學科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學中應(yīng)該把握的基本特征,也是我們應(yīng)當把握的地理學科的本質(zhì)特征,因此在本節(jié)課的設(shè)計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學科的本質(zhì)。

  • 人教版高中地理必修3資源的跨區(qū)域調(diào)配—以我國的西氣東輸為例說課稿

    人教版高中地理必修3資源的跨區(qū)域調(diào)配—以我國的西氣東輸為例說課稿

    由于這部分知識已要求學生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機會讓他們進行交流,充分發(fā)表各自的見解。所以,學生對這個知識掌握起來并不難。所以,我對這部分內(nèi)容不做太多的講解,只要做進一步的梳理,加深學生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學生對西氣東輸工程的原因掌握之后進入的是小結(jié)環(huán)節(jié),這里我進一步提出問題:在西氣東輸工程段的建設(shè)中有沒有什么難關(guān)? 通過西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國的科技的發(fā)展,增加學生的愛國情,同時也說明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學生課后預(yù)習本課剩下的內(nèi)容:思考西氣東輸對區(qū)域發(fā)展的影響以及為何要實施資源的跨區(qū)域調(diào)配。通過這樣的問題一方面為下節(jié)課學習奠定基礎(chǔ),另一方面體現(xiàn)本課學習從“個”到“類”從特殊到一般的過程。

  • 人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關(guān)系和運算教學設(shè)計

    人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關(guān)系和運算教學設(shè)計

    新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。

  • 人教A版高中數(shù)學必修一充分條件與必要條件教學設(shè)計(1)

    人教A版高中數(shù)學必修一充分條件與必要條件教學設(shè)計(1)

    本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).

上一頁123...434445464748495051525354下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!