(二) 呈現(xiàn)新課 (Presentation)1、教師出示學(xué)過的縮略語(yǔ)PRCUKCANUSA讓孩子讀一讀,然后拿出相應(yīng)的卡片貼在黑板上請(qǐng)掌握較好的學(xué)生帶著同學(xué)們讀一讀縮略語(yǔ)2、出示課文中的縮略語(yǔ),讓孩子們自己試著讀一讀,然后試著說說縮略語(yǔ)的含義3、聽錄音,跟讀。小組說說4、讓孩子們介紹自己收集的生活中的縮略語(yǔ)教師給以適當(dāng)?shù)臄U(kuò)充:CCTVWTOUFO等5、教師分別出示大小寫Hh,讓孩子想想大小寫的字母分別想什么,用語(yǔ)言描述或是用動(dòng)作表示。6、Let’s chant聽錄音,邊聽邊打節(jié)奏聽錄音,邊聽邊出示相應(yīng)的字母聽錄音,邊聽邊試著說歌謠孩子們帶上自己的頭飾,在小組中邊演邊說各小組展示(三)趣味操練(Practice)1、listen and order the cards讓孩子說字母,按照聽到的順序排列字母2、listen and guess教師拼一拼縮略語(yǔ),孩子快速說出詞小組游戲(四) 擴(kuò)展性活動(dòng)(Add-activities)紙牌游戲兩個(gè)孩子分別有一套學(xué)過的字母卡,按順序出卡片,看誰能最先組成一個(gè)學(xué)過的縮略語(yǔ)?!景鍟O(shè)計(jì)】
2、揭題:小朋友們,知道嗎?剛才你們的學(xué)習(xí)過程其實(shí)就是統(tǒng)計(jì)的過程,這節(jié)課我們就一起來研究統(tǒng)計(jì)的有關(guān)知識(shí)。3、發(fā)統(tǒng)計(jì)圖和統(tǒng)計(jì)表:根據(jù)你剛才收集的數(shù)據(jù),完成統(tǒng)計(jì)圖和統(tǒng)計(jì)表。實(shí)踐活動(dòng)(調(diào)查全班小朋友們喜歡的動(dòng)物)統(tǒng)計(jì)表:(學(xué)具卡片)綠孔雀非洲象大熊貓袋鼠梅花鹿河馬統(tǒng)計(jì)圖:(學(xué)具卡片)綠孔雀非洲象大熊貓袋鼠梅花鹿河馬4、出示統(tǒng)計(jì)圖和統(tǒng)計(jì)表。(1)通過小朋友們的統(tǒng)計(jì),你能發(fā)現(xiàn)什么?(2)你可以提出什么問題?三、總結(jié):1、日常生活中有許多事情可以用統(tǒng)計(jì)解決,你能說一說嗎?2、談?wù)勥@節(jié)課你的收獲。作業(yè)布置:第二課時(shí)、練習(xí)教學(xué)內(nèi)容:完成練習(xí)十七的2——4題。教學(xué)目標(biāo):鞏固本單元所學(xué)的內(nèi)容。教學(xué)過程:一、檢查作業(yè):1、小組互相交流自己調(diào)查的結(jié)果。2、展示幾份。二、練習(xí):練習(xí)十七1、第2題。(1)看圖,明確題意。(2)先用自己喜歡的方法統(tǒng)計(jì)。(3)完成統(tǒng)計(jì)表及問題。(4)集體訂正。
2.采用比較簡(jiǎn)便的方法,師生合作完成“數(shù)據(jù)的收集與整理(強(qiáng)調(diào)數(shù)據(jù)的準(zhǔn)確性),學(xué)生獨(dú)立完成“表格的填寫”。3.小組內(nèi)討論完成“表格的分析”。4.全班進(jìn)行反饋。(意在培養(yǎng)獨(dú)立收集、整理數(shù)據(jù)的能力,核對(duì)數(shù)據(jù)的準(zhǔn)確性,并且擴(kuò)大提問題的參與面,讓學(xué)生也能啟動(dòng)智慧、享受快樂;及時(shí)反饋信息,調(diào)整教學(xué)目標(biāo))四、全課總結(jié)1.通過今天的學(xué)習(xí),同學(xué)們有哪些收獲?2.應(yīng)用延伸。(課本第112頁(yè)練習(xí)二十二第1題)五、布置作業(yè)教后反思統(tǒng)計(jì)是日常生產(chǎn)生活中常用和實(shí)用的工具,因此統(tǒng)計(jì)也是小學(xué)生必備的能力之一。但是統(tǒng)計(jì)的教學(xué)較為枯燥無味,教師往往會(huì)輕視統(tǒng)計(jì)的教學(xué),忽略學(xué)生能力方面的培養(yǎng)。在教學(xué)統(tǒng)計(jì)時(shí),老師要激發(fā)學(xué)生學(xué)習(xí)統(tǒng)計(jì)的興趣,創(chuàng)造各種情景,加強(qiáng)學(xué)生統(tǒng)計(jì)中的動(dòng)手實(shí)踐操作訓(xùn)練,同時(shí)在實(shí)際生活中加以運(yùn)用,并逐步加大難度和密度,同時(shí)也需要知道,統(tǒng)計(jì)教學(xué)不要過分地浮夸,多給予學(xué)生統(tǒng)計(jì)的意義,使其明確學(xué)習(xí)的目的。
制作前先讓學(xué)生說說每格表示幾個(gè)單位然后再制作統(tǒng)計(jì)圖。2.小組交流作品,復(fù)習(xí)回顧‘條形統(tǒng)計(jì)圖’的相關(guān)信息“制作步驟、特點(diǎn)”A學(xué)生根據(jù)條形統(tǒng)計(jì)圖說說發(fā)現(xiàn)了哪些信息?B學(xué)生小組評(píng)價(jià)優(yōu)秀作品;C全班交流優(yōu)秀作品。三、對(duì)比條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,認(rèn)識(shí)折線統(tǒng)計(jì)圖的特點(diǎn)1.師演示“98~03年市中小學(xué)參觀科技發(fā)展人數(shù)折線統(tǒng)計(jì)圖”,學(xué)生觀察。師:這個(gè)統(tǒng)計(jì)圖是怎樣完成的?師和生一起分析折線統(tǒng)計(jì)圖,教師演示其中的一個(gè)數(shù)據(jù)的畫法,讓生知道是這張統(tǒng)計(jì)圖是如何畫的。師:你們對(duì)比這兩個(gè)統(tǒng)計(jì)圖,看看它們有什么異同?學(xué)生先獨(dú)立思考,再在小組內(nèi)交流。2.小結(jié):條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖相同點(diǎn)和不同點(diǎn)。教師把兩種統(tǒng)計(jì)圖的相同點(diǎn)和不同點(diǎn)板書出來。3.認(rèn)識(shí)折線統(tǒng)計(jì)圖,發(fā)現(xiàn)折線統(tǒng)計(jì)圖的特點(diǎn)師:你能從折線統(tǒng)計(jì)圖中發(fā)現(xiàn)哪些信息?有什么感想?引導(dǎo)學(xué)生觀察參加科技發(fā)展人數(shù)的變化情況,并談自己的感想,培養(yǎng)學(xué)生關(guān)心周圍事物的興趣并引導(dǎo)學(xué)生積極參加社會(huì)實(shí)踐活動(dòng)。
二、教學(xué)目標(biāo)1、知識(shí)與技能:使學(xué)生經(jīng)歷探索加法交換律的過程,理解并掌握加法交換律,初步感知加法交換律的價(jià)值,發(fā)展應(yīng)用意識(shí)。2、數(shù)學(xué)思考:使學(xué)生在學(xué)習(xí)用符號(hào)、字母表示加法交換律的過程中,初步發(fā)展學(xué)生的符號(hào)感,逐步提高歸納、推理的抽象思維能力。3、解決問題:運(yùn)用加法交換律的思想探索其他運(yùn)算中的交換律。4、情感與態(tài)度:使學(xué)生在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),進(jìn)一步增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣和信心,初步形成獨(dú)立思考和探究問題的意識(shí)和習(xí)慣。三、教學(xué)重點(diǎn):理解并運(yùn)用加法交換律。四、教學(xué)難點(diǎn):在學(xué)生已有知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上引導(dǎo)學(xué)生歸納出加法交換律。五、教學(xué)關(guān)鍵:引導(dǎo)學(xué)生運(yùn)用各種不同的表達(dá)方法理解加法交換律的思想。六、教學(xué)過程(一)情境,形成問題1、談話:同學(xué)們喜歡運(yùn)動(dòng)嗎?你最喜歡哪項(xiàng)體育運(yùn)動(dòng)?李叔叔是一個(gè)自行車旅行愛好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車旅行的情境圖。仔細(xì)觀察這幅圖,你從圖上知道哪些信息?
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、說教材《兩位數(shù)加一位數(shù)的進(jìn)位加法》是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書一年級(jí)下冊(cè)P62“兩位數(shù)加一位數(shù)的進(jìn)位加法”,本課是在兩位數(shù)加一位數(shù)和整十?dāng)?shù)的基礎(chǔ)上進(jìn)行教學(xué)的。在本節(jié)課中,通過生活情境圖,引入兩位數(shù)加一位數(shù)的進(jìn)位加法,并使學(xué)生在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)加法的意義,鼓勵(lì)學(xué)生提出問題并解決問題,要讓學(xué)生在獨(dú)立思考的基礎(chǔ)上,經(jīng)歷與他人交流的過程,探索并掌握兩位數(shù)加一位數(shù)進(jìn)位加法的計(jì)算方法,并能正確地計(jì)算,加強(qiáng)動(dòng)手操作,探索計(jì)算方法,體會(huì)算法的多樣性。根據(jù)本節(jié)課在教材中的地位和作用,依據(jù)小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)和孩子們已有的認(rèn)知水平,我把本節(jié)課的教學(xué)目標(biāo)定為:1、知識(shí)與技能在解決實(shí)際問題的過程中,進(jìn)一步體會(huì)加法的意義,探索并掌握兩位數(shù)加一位數(shù)進(jìn)位加法的計(jì)算方法。
二、說教學(xué)目標(biāo)1、結(jié)合具體情境進(jìn)一步理解加減法的意義,能正確口算得數(shù)是百以內(nèi)數(shù)的兩位數(shù)加減法。2、能利用所學(xué)知識(shí),在教師的指導(dǎo)下提出并解決簡(jiǎn)單的實(shí)際問題,了解同一問題可以用不同的方法解決。3、經(jīng)歷與他人交流各自計(jì)算方法的過程,體驗(yàn)解決問題策略的多樣性,感受學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。三、說教法、學(xué)法教法:為了使學(xué)生掌握好百以內(nèi)的兩位數(shù)加減兩位數(shù)的口算這部分知識(shí),達(dá)到以上教學(xué)目的,突破以上教學(xué)重難點(diǎn),我采用了遷移法、引導(dǎo)法、講解法、聯(lián)系法、自主探索法來進(jìn)行教學(xué)。學(xué)法:通過本課的學(xué)習(xí),使學(xué)生學(xué)會(huì)利用舊知構(gòu)建新知的方法、合作探究的方法,調(diào)動(dòng)學(xué)生主動(dòng)探索的積極性。四、說教學(xué)過程(一)創(chuàng)設(shè)情景、導(dǎo)入新課1、談話:同學(xué)們,大千世界無奇不有。我們所處的人類的社會(huì)是由一個(gè)個(gè)擔(dān)任不同工作的人所組成的,而和我們生活密切相關(guān)的蜜蜂也跟人類一樣,它們生活在一個(gè)蜜蜂王國(guó)里,今天我們就一起到那里了解一下蜜蜂的生活吧。