問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱(chēng)性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱(chēng),我們把拋物線的對(duì)稱(chēng)軸叫做拋物線的軸.拋物線只有一條對(duì)稱(chēng)軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長(zhǎng)軸長(zhǎng)是a. ( )(2)若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長(zhǎng)軸長(zhǎng)、半短軸長(zhǎng)、焦點(diǎn)坐標(biāo)及離心率;(2)寫(xiě)出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長(zhǎng)軸長(zhǎng)為10,半短軸長(zhǎng)為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱(chēng)性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱(chēng);③頂點(diǎn):長(zhǎng)軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
問(wèn)題導(dǎo)學(xué)類(lèi)比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱(chēng)性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱(chēng)。x軸、y軸是雙曲線的對(duì)稱(chēng)軸,原點(diǎn)是對(duì)稱(chēng)中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱(chēng)軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫(huà)出雙曲線的草圖
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱(chēng)軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱(chēng)軸旋轉(zhuǎn)一周形成的曲面)的一部分。過(guò)對(duì)稱(chēng)軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門(mén)位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過(guò)旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問(wèn)題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問(wèn)題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再?gòu)漠?huà)法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過(guò)豐富的實(shí)例展開(kāi)教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)(3,√10);(3)a=b,經(jīng)過(guò)點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱(chēng)為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱(chēng)為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說(shuō)明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書(shū)設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢(shì),可通過(guò)圖象來(lái)研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫(huà)面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來(lái),完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:根據(jù)“全等三角形的對(duì)應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來(lái)求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問(wèn)題時(shí)要將所求的角與已知角通過(guò)全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來(lái).三、板書(shū)設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過(guò)練習(xí)來(lái)理解全等三角形的性質(zhì)并滲透符號(hào)語(yǔ)言推理.通過(guò)實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問(wèn)題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書(shū)設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問(wèn)題經(jīng)歷一般規(guī)律的探索過(guò)程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問(wèn)題中得到關(guān)系式這一過(guò)程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類(lèi)問(wèn)題通常使用割補(bǔ)法來(lái)計(jì)算.連接BD、AC,由正方形的對(duì)稱(chēng)性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書(shū)設(shè)計(jì)1.簡(jiǎn)單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動(dòng)手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
目標(biāo)導(dǎo)學(xué)三:深入理解,體會(huì)“無(wú)言之美”1.請(qǐng)你結(jié)合作者的任意一則論據(jù),說(shuō)說(shuō)你對(duì)“無(wú)言之美”的感受。明確:正如作者探討文學(xué)作品時(shí)的數(shù)個(gè)例子,詩(shī)歌本是極其簡(jiǎn)短的幾句話,但是其包含的意境卻是極其寬廣的。如“大漠孤煙直,長(zhǎng)河落日?qǐng)A”,言語(yǔ)只有短短的十個(gè)字,但是讀來(lái)卻似看見(jiàn)大漠的寬闊宏偉之景,悲涼之意,予人以悲涼雄壯的美感。然而,作者要描寫(xiě)出這寬闊宏偉之景,悲涼之意,恐怕書(shū)萬(wàn)言都難以說(shuō)盡,這不是意味著作者將它們?cè)⒂跓o(wú)言之中了嗎?這就是古典文學(xué)中深蘊(yùn)的無(wú)言之美。2.拓展延伸:品味下面一段話,說(shuō)說(shuō)你品味到“無(wú)言之美”的例子。拿美術(shù)來(lái)表現(xiàn)思想和情感,與其盡量流露,不如稍有含蓄;與其吐肚子把一切都說(shuō)出來(lái),不如留一大部分讓欣賞者自己去領(lǐng)會(huì)。因?yàn)樵谛蕾p者的頭腦里所產(chǎn)生的印象和美感,有含蓄比較盡量流露的還要更加深刻。
1.培養(yǎng)學(xué)習(xí)語(yǔ)文的興趣,感悟生活處處皆語(yǔ)文的道理。2.了解招牌、廣告詞和對(duì)聯(lián)。3.按興趣分組,制定活動(dòng)計(jì)劃。 一、導(dǎo)入新課師:同學(xué)們,我們學(xué)習(xí)語(yǔ)文都有哪些途徑呢?(生:課本、課堂。)除此之外,老師認(rèn)為還可以通過(guò)以下途徑來(lái)學(xué)習(xí)語(yǔ)文。從媒體中學(xué)語(yǔ)文——網(wǎng)絡(luò)用語(yǔ)、手機(jī)短信、歌詞等;從名字中學(xué)語(yǔ)文——人名、地名等;向群眾學(xué)語(yǔ)文——俗語(yǔ)、諺語(yǔ)、歇后語(yǔ)等;從傳統(tǒng)文化中學(xué)語(yǔ)文——對(duì)聯(lián)……從廣告中學(xué)語(yǔ)文——商業(yè)廣告、公益廣告…… 師:無(wú)論是讀書(shū)看報(bào)、與人聊天,還是聽(tīng)相聲、看電視、逛商場(chǎng),只要留心觀察,隨時(shí)注意語(yǔ)言現(xiàn)象,總會(huì)發(fā)現(xiàn)與語(yǔ)文有關(guān)的問(wèn)題。書(shū)本上、電視上、報(bào)紙上滿是漢字。大街上的招牌、廣告、門(mén)對(duì)等全都充滿語(yǔ)文氣息。語(yǔ)文學(xué)習(xí)不能局限于課堂與書(shū)本,生活處處有語(yǔ)文。今天,我們就來(lái)開(kāi)展綜合性學(xué)習(xí)活動(dòng)“我的語(yǔ)文生活”,看看怎樣在生活中學(xué)習(xí)語(yǔ)文。
請(qǐng)同學(xué)們閱讀教材P133虛線框內(nèi)的內(nèi)容,根據(jù)要求選擇某一新聞事件,開(kāi)展時(shí)事討論,積極發(fā)表看法。提示:學(xué)生圍繞事件展開(kāi)討論,積極發(fā)言,認(rèn)真聽(tīng)取同學(xué)的意見(jiàn),討論時(shí)注意遵守之前制定的“班級(jí)議事規(guī)則”。(全班討論,師總結(jié))【設(shè)計(jì)意圖】此環(huán)節(jié)通過(guò)開(kāi)展班級(jí)討論活動(dòng),制定貼近學(xué)生生活的“班級(jí)議事規(guī)則”,將學(xué)習(xí)的與“和”相關(guān)的知識(shí)引入實(shí)踐生活,培養(yǎng)學(xué)生運(yùn)用知識(shí)指導(dǎo)生活實(shí)踐的綜合能力。五、以“和”為文,總結(jié)收獲師:同學(xué)們,通過(guò)本次綜合性學(xué)習(xí)活動(dòng),我們知道了“以和為貴”不僅是為人處世的準(zhǔn)繩,也是從政治國(guó)的法寶,是處理國(guó)際關(guān)系的原則,是創(chuàng)建和諧社會(huì)的前提條件。通過(guò)這次活動(dòng),你對(duì)中國(guó)文化中的“和”一定也有了許多的認(rèn)識(shí)和理解吧!任選一個(gè)角度,寫(xiě)一篇不少于600字的作文,談?wù)勀愕氖斋@。
師小結(jié):本篇習(xí)作開(kāi)篇概述原作內(nèi)容,抓住要點(diǎn),簡(jiǎn)明扼要。感想的內(nèi)容,先扣住深沉的父愛(ài),表達(dá)自己對(duì)傅雷的敬意,然后贊美現(xiàn)實(shí)生活中父愛(ài)的偉大。思路清晰,情感真摯。【設(shè)計(jì)意圖】以《傅雷家書(shū)》讀后感寫(xiě)作為例,指導(dǎo)學(xué)生如何寫(xiě)讀后感。重點(diǎn)指導(dǎo)“點(diǎn)引議聯(lián)結(jié)”的基本結(jié)構(gòu),讓學(xué)生寫(xiě)作有章可循。四、嘗試寫(xiě)讀后感1.寫(xiě)作內(nèi)容師:同學(xué)們已經(jīng)閱讀了《傅雷家書(shū)》,請(qǐng)大家回顧內(nèi)容,自擬題目,按照今天講的寫(xiě)讀后感的方法,先列出寫(xiě)作提綱,再寫(xiě)成作文,不少于600字。2.能力提升用已學(xué)的讀后感知識(shí),修改自己的作文。并反思所寫(xiě)讀后感是否有以下不足:(1)以“引”代“感”。讀后感,顧名思義,主要是寫(xiě)“感”,引述是為寫(xiě)“感”服務(wù)的,但有些同學(xué)往往忘記了這一條,本末倒置,大量抄錄或復(fù)述原文,結(jié)果犯了以“引”代“感”、代“聯(lián)”的毛病。
一是縮小頁(yè)邊距和行間距,縮小字號(hào)。正式文件一般對(duì)字號(hào)、間距有嚴(yán)格的要求,但是在非正式文件里,可適當(dāng)縮小頁(yè)邊距和行間距,縮小字號(hào)??伞吧享斕?,下連地,兩邊夠齊”,對(duì)于字號(hào),以看清為宜。二是紙張雙面打印、復(fù)印。紙張雙面打印、復(fù)印既可以減少費(fèi)用,又可以節(jié)能減排。如果全國(guó)10%的打印、復(fù)印做到這一點(diǎn),那么每年可減少耗紙約5.1萬(wàn)噸,節(jié)能6.4萬(wàn)噸標(biāo)準(zhǔn)煤,相應(yīng)減排二氧化碳16.4萬(wàn)噸。三是打印時(shí)能不加粗、不用黑體的就盡量不用,能節(jié)省墨粉或鉛粉。此外,能夠用電腦網(wǎng)絡(luò)傳遞的文件就盡量在網(wǎng)絡(luò)上傳遞,比如電子郵件、單位內(nèi)部網(wǎng)絡(luò)等,這樣下來(lái)也可以節(jié)約不少紙張。(選自《低碳校園——讓我們的學(xué)校更美好》,天津人民出版社2013年版)(學(xué)生圍繞各自任務(wù),課外搜集制作宣傳材料,時(shí)間為一周。)【設(shè)計(jì)意圖】本環(huán)節(jié)先從探討自身在低碳生活中力所能及的事情,讓學(xué)生切實(shí)認(rèn)識(shí)到低碳生活就在日常的一舉一動(dòng)中。然后圍繞主題分組,并保證足夠的時(shí)間,讓學(xué)生去收集整理資料,落實(shí)任務(wù),使學(xué)生能真正成為低碳的倡導(dǎo)者和踐行者。
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。