方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
教學反思: 1.本課時設(shè)計的主導思想是:將數(shù)形結(jié)合的思想滲透給學生,使學生對數(shù)與形有一個初步的認識.為將來的學習打下基礎(chǔ),這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時,交給學生一種很重要的數(shù)學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結(jié)論有一個感性的認識,并為下面的教學做一個鋪墊.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質(zhì)和興趣。
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質(zhì).從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.
(1)該校被抽查的學生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學生,估計該年級在2015年有多少名學生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù),且扇形統(tǒng)計圖中對應的A區(qū)所占的百分比已知,由此即可求出被抽查的學生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學生視力合格.解:(1)該校被抽查的學生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù)是80人,與其相對應的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學生人數(shù)為80÷40%=200(人).
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關(guān)點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內(nèi)的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質(zhì)的思考而設(shè)計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學習的內(nèi)容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.
本教材選自《幼兒園教育教學安排意見》小班內(nèi)容,認識三角形是幼兒幾何形體教育的內(nèi)容之一,幼兒的幾何形體教育使幼兒數(shù)學教育的重點內(nèi)容。幼兒學習一些幾何形體的簡單知識能幫助他們對客觀世界中形形色色的物體做出辨別和區(qū)分。發(fā)展它們的空間知覺能力和初步的空間想象力從而為小學學習幾何形體做些準備。小班幼兒在他們充分獲得對圓形的感知和確認后,再讓他們認識三角形的特征,這對發(fā)展幼兒的觀察力、比較能力和空間概念具有重要意義。認識三角形是在認識圓形的基礎(chǔ)上進行的。這就為比較圓形和三角形奠定了知識基礎(chǔ),有利于幼兒對三角形的感知和掌握。本節(jié)課的知識點就是三角形的特征。基于以上對教材的分析,結(jié)合幼兒的認知特點,確定以下教學目標:1、教幼兒知道三角形的名稱和主要特征,知道三角形由3條邊、3個角。2、教幼兒把三角形和生活中常見的實物進行比較,能找出和三角形相似的物體。3、發(fā)展幼兒觀察力、空間想象力,培養(yǎng)幼兒的動手操作能力。
1、圓的半徑是 ,假設(shè)半徑增加 時,圓的面積增加 。(1)寫出 與 之間的關(guān)系表達式;(2)當圓的半徑分別增加 , , 時,圓的面積增加多少?!驹O(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。2、籬笆墻長 ,靠墻圍成一個矩形花壇,寫出花壇面積 與長 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍?!驹O(shè)計意圖】此題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習第1題,習題2.1第1題;
5、課本練習:P129引導學生運用隨機數(shù)表來模擬試驗過程并給予解答。問題2:有四個鬮,其中兩個分別代表兩件獎品,四個人按順序依次抓鬮來決定這兩件獎品的歸屬,先抓的人中獎率一定大嗎?教法:可組織學生用試驗的方法來說明問題,對于試驗的結(jié)果是有說服力的,很容易使學生相信摸獎的次序?qū)χ歇劦母怕蕸]有影響。問題3:彩民甲研究了近幾期這種體育彩票的中獎號碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認為,06和08是“幸運號碼”,因此,他在所買的每一注彩票中都選上了06和08。你認為他這樣做有道理嗎?教法說明:要讓學生看到試驗方法對試驗結(jié)果的影響:1、 因為開獎用的36個球是均勻的、無差別的,所以每個號碼被選為中獎號碼的可能性是一樣的,不存在“幸運號碼”。
5、板書設(shè)計 §1.4船有觸礁的危險嗎 一、船布觸礁的危險嗎 1.根據(jù)題意,畫出示意圖.將實際問題轉(zhuǎn)化為數(shù)學問題. 2.用三角函數(shù)和方程的思想解決關(guān)于直角三角形的問題. 3.解釋最后的結(jié)果. 二、測量塔高 三、改造樓梯 五布置課后作業(yè): 習題1.6第12 3題 六、設(shè)計說明 具有現(xiàn)實意義和挑戰(zhàn)性的內(nèi)容的設(shè)計,激發(fā)學生的學習興趣,使學生樂學。 開放性實踐問題和分層作業(yè)的設(shè)置,滿足每個學生的學習需求,使學生愿學。 多樣的學習方式和適時引導,提高學生的學習質(zhì)量,使學生能學。 背景多樣,層層遞進,適時反思,發(fā)展學生的數(shù)學思維能力,使學生活學。 當學生樂學、愿學、能學、活學時,就將學會學習,將學習當成樂趣,作為生命中不可或缺的部分,也為學生終生學習奠定良好的基礎(chǔ)。
(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設(shè)計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關(guān)注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關(guān)注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關(guān)注學生中出現(xiàn)的典型錯誤。)(設(shè)計意圖: 讓學生進一步熟悉如何將實際問題轉(zhuǎn)化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。
設(shè)計意圖這一組習題的設(shè)計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學習數(shù)學的樂趣,增強學習數(shù)學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結(jié),給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應用。設(shè)計意圖通過讓學生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學生完成基本學習任務(wù)的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。
注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學生求∠A,∠B的正切及時強化學生對概念的3、正切函數(shù)的應用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學生進行正切的變式訓練,讓學生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習的安插注意梯度,讓不同的學生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達標測試具體思路:把幾個問題分為四個等級,方便對學生的了解;通過評價讓學生對自己的學習也做到心中有數(shù)。
設(shè)計說明:設(shè)計這組測驗為了反饋學生學習情況,第1題較簡單,也是為了讓提高學生學習士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學生的不同需求.教師可們采用搶答方式調(diào)動學生積極性,學生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習題A組1,2,3; B層 習題B組.設(shè)計說明:設(shè)計第1題的原因保證了知識的完整性,學生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應用了新學知識,又給學生提供了更廣泛地思考空間.第2題,主要是讓學生進一步鞏固新學知識,規(guī)范解題步驟. 在作業(yè)設(shè)計時,既面向全體學生,又尊重學生的個體差異,以掌握知識形成能力為主要目的.