教學目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉化。3.會根據(jù)三視圖描述原幾何體。教學重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法教學過程設計一、實物觀察、空間想像設置:學生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學們畫出三視圖。而后,再要求學生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內(nèi)容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
質疑解難 1.結合資料袋中的內(nèi)容介紹本文主人公一李四光?! ?.學生針對課文內(nèi)容質疑,師生共同解疑?! 。?)對預習認真,能主動、正確解疑的同學給予表揚?! 。?)主要解決以下疑難: 隕石:大的流星在經(jīng)過地球大氣層時,沒有完全燒毀墜落到地球上的含石質較多或全部為石質的隕星?! 〉刭|學家:從事地球物質形成和地殼構造研究,以探討地球的形成和發(fā)展的科學家。 突兀:高聳?! 〉谒募o:地質歷史的最后一個紀。約250萬年前至今。此時高緯度地區(qū)廣泛地發(fā)生了多次冰川作用?! ”ǎ涸诟呱交騼蓸O地區(qū),積雪由于自身的壓力變成冰塊(或積雪融化、下滲凍結成冰塊兒又因重力作用而沿著地面傾斜方面移動,這種移動的大冰塊叫做冰川。在地質上的新生代第四紀,氣候非常寒冷,世界上的許多地方被冰川覆蓋,稱第四紀冰川?! ∏貛X:橫貫我國中部,東西走向的古老語皺斷層山脈。我國地理上的南北分界線。分布有冰川槽谷、角峰等。
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或實物原型.一、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內(nèi)角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調(diào)動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內(nèi)角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內(nèi)角和是180°這一結論
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結:由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
從課程內(nèi)容來看,本節(jié)課屬于“圖形與幾何”中“圖形的性質”部分。依據(jù)課標的要求,我從以下四個方面設定了課程目標,分別是:1。知識技能:(1)掌握判定直角三角形全等的“斜邊、直角邊”定理。(2)已知一直角邊和斜邊,能用尺規(guī)作出直角三角形。2。數(shù)學思考:(1)經(jīng)歷探索、猜想、證明的過程,進一步體會證明的必要性,發(fā)展推理能力和有條理的表達能力。(2)在探究過程中,滲透由特殊到一般的數(shù)學思想方法。3。問題解決:能利用直角三角形的全等解決有關問題。4。情感態(tài)度:通過學習,讓學生感受數(shù)學證明的嚴謹性,發(fā)展勇于質疑、嚴謹求實的科學態(tài)度。
1、中國三大自然區(qū)的空間位置和基本特征。2、中國自然區(qū)域差異對人類活動的影響。◆重要圖釋圖1.1“三大自然區(qū)圖”三大自然區(qū)的界線(自然地理分界):西北干旱半干旱區(qū)與東部季風區(qū)之間大致以400mm等年降水量線為界,青藏高寒區(qū)與東部季風區(qū)約以3000米等高線為界,青藏高寒區(qū)與西北干旱半干旱區(qū)以昆侖山——阿爾金山——祁連山為界。【學習策略】1、讀圖分析:通過讀圖、分析、歸納的方法,識記三大自然區(qū)的空間位置、相互界線,理解各自然地理要素的特征和空間分布規(guī)律。2、綜合訓練:運用空白地圖,將地理事物落實在圖上,并進行比較分析、歸納整理,理解三大自然區(qū)的區(qū)域差異。【教學內(nèi)容】一、三大自然區(qū)的劃分1.三大自然區(qū)的劃分依據(jù)(地貌、氣候的地域差異)
三、說教學重難點1.通過對課文的整體把握和重點詞句的理解,了解我國各民族兒童的友愛團結及他們幸福的學習生活,體會貫穿全文的自豪和贊美之情。(重點)2.體會描寫窗外的安靜和小動物的熱鬧的句子的表達效果。(難點)四、說教法、學法教無定法,貴在得法,為了突出教學重點,解決教學難點,根據(jù)教材特點和學生的年齡特征。我主要采取想象感悟法、朗讀感悟法、品詞析句法這三種教學方法。運用想象感悟法可以挖掘教材的空白處,開啟學生想象的閘門,在研讀中通過換位思考體驗人物的內(nèi)心,豐滿任務在學生心中的形象,真正做到基于文本又超越文本,同時發(fā)展學生的語言和思維;運用朗讀感悟法可以以讀激情,以讀促悟,以情助讀,讓學生在讀中理解感悟;運用品詞賞析法可以讓學生抓住關鍵詞加以揣摩、推敲、咀嚼,感悟字里行間所蘊含的情感。
2、初步掌握按順序涂刷的方法。 3、鼓勵幼兒大膽嘗試,體驗美術活動的樂趣。 活動準備: 1、場景布置:柵欄、樹、房子、小熊圖片若干。 2、照相機,音樂《洋娃娃和小熊跳舞》。 3、“底片”若干,與幼兒人數(shù)相等。 4、畫板,紅、黃、藍三色顏料及畫筆、抹布,大襯衣。 活動過程: 1、游戲環(huán)節(jié)一:尋找小熊 ——教師帶幼兒隨音樂進場,觀賞場景。(引領幼兒尋找小熊) ——教師適時詢問:你在哪找到小熊的? 2、游戲環(huán)節(jié)二:拍照片
一、游戲活動激趣,認識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認識對稱物體:1)師質疑:為什么女生猜得又快又準呢?2)小結:像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學生觀察,這些平面圖形還是不是對稱的。2、師小結:像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?
活動準備: 黑色或棕色蠟筆,白紙活動過程: 一、擁抱大樹 來到戶外,每個人尋找一棵自己喜歡的大樹,做上記號,并與之擁抱。 師:閉上眼睛,用手感覺樹皮的質地,說說自己的感受。
準備:1、名畫課件:大碗島的星期天 2、畫紙、繪畫工具人手一份。 3、事先和幼兒一起認識對比色。 4、事先帶幼兒到田野里去秋游?;顒舆^程: 一、導入。 師:小朋友,你們以前畫過人嗎?你畫的人是什么樣子的?是正面、背面還是側面? 幼兒自由回答。二、演示名畫《大碗島的星期天》,引導幼兒欣賞。 師:今天老師也帶來了一幅人物畫,請你來找一找畫面中的人是面向哪里的。 教師播放課件讓幼兒欣賞,提問: (1)你在畫中看到了什么? (2)這些人在干什么?他們有些什么樣的姿態(tài)?你能不能表演一下? (3)這是什么季節(jié)?你能猜出他們在什么地方?有什么樣的風光?
2、觀看幼兒示范,傾聽教師講解,學習在指定范圍內(nèi)畫彩色的點,表現(xiàn)美麗的大魚?! ?3、學會認真、耐心地進行美術活動。 活動準備: 1、幼兒用書人手一冊,棉簽若干,顏料盤每組2-3盤?! ?2、水墨畫、油畫棒、水彩等形式表現(xiàn)的各種形態(tài)的魚?! ?3、在白紙上畫一條魚的線條。 活動過程:一、聽謎面、猜謎語、引出主題。 教師:有頭沒有頸,身上亮晶晶,有翅不能飛,沒腳倒能行。這是一種生活在水里的動物,請你猜一猜這是什么動物?
活動準備: 1、雞蛋殼、餅干、杯子、醋、鏡子 2、課前兩天和幼兒一起將雞蛋殼浸在醋里; 3、產(chǎn)生齲齒的過程圖片和牙防五步曲的圖片 4、牙模型、牙刷各一、動畫片《聰聰王子牙防歷險記》活動過程: 一、律動進場,引出情景表演; 牙寶寶在哭,原來是他的小主人喜歡吃甜食,又不刷牙,時間長了,細菌在牙寶寶的身上鉆了幾個洞洞。