[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
請寫出 推理過程:∵ ,在兩邊同時(shí)加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實(shí)例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個(gè)條件?三、 鞏固練習(xí):1.在相同時(shí)刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實(shí)數(shù),但在解決實(shí)際問題的過程中,自變量的取值范圍要根據(jù)實(shí)際情況來確定.解題過程中應(yīng)該注意對(duì)題意的正確理解.三、板書設(shè)計(jì)反比例函數(shù)概念:一般地,如果兩個(gè)變量x,y之間 的對(duì)應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活實(shí)際,并為生活實(shí)際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
4、 填表:相反數(shù) 絕對(duì)值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對(duì)值是6 , 1.2 , 0 的數(shù)6、 計(jì)算:(1) (2) 五、探究學(xué)習(xí)1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請通過列式計(jì)算回答下列兩個(gè)問題:(1) 這個(gè)人乘車一共行駛了多少千米?(2) 這個(gè)人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對(duì)值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結(jié)一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因?yàn)樗哌^ 的距離之和,有時(shí)候我們是無法 想象的。這就是今天所學(xué)的絕對(duì)值的意義所在。所以絕對(duì)值是不考慮方向意義時(shí)的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應(yīng)的部分。
一、 背景與意義分析統(tǒng)計(jì)主要研究現(xiàn)實(shí)生活中的數(shù)據(jù),它通過收集、整理、描述和分析數(shù)據(jù)來幫助人們對(duì)事物的發(fā)展作出合理的判斷,能夠利用數(shù)據(jù)信息和對(duì)數(shù)據(jù)進(jìn)行處理已成為信息時(shí)代每一位公民必備的素質(zhì)。通過對(duì)本章全面調(diào)查和抽樣調(diào)查的學(xué)習(xí),學(xué)生可基本掌握收集和整理數(shù)據(jù)的方法。二、 學(xué)習(xí)與導(dǎo)學(xué)目標(biāo)1 知識(shí)積累與疏導(dǎo):通過復(fù)習(xí)小結(jié),進(jìn)一步領(lǐng)悟到現(xiàn)實(shí)生活中通過數(shù)據(jù)處理,對(duì)未知的事情作出合理的推斷的事實(shí)。2 技能掌握與指導(dǎo):通過復(fù)習(xí),進(jìn)一步明確數(shù)據(jù)處理的一般過程。3 智能提高與訓(xùn)導(dǎo):在與他人交流合作的過程中學(xué)會(huì)設(shè)計(jì)調(diào)查問卷。4 情感修煉與提高:積極創(chuàng)設(shè)情境,參與調(diào)查、整理數(shù)據(jù),體會(huì)社會(huì)調(diào)查的艱辛與樂趣。5 觀念確認(rèn)與引導(dǎo):體會(huì)從實(shí)踐中來到實(shí)踐中去的辨證思想。三、 障礙與生成關(guān)注調(diào)查問卷的設(shè)計(jì)及根據(jù)調(diào)查總結(jié)的報(bào)告給出合理的預(yù)測。四、 學(xué)程與導(dǎo)程活動(dòng)活動(dòng)一 回顧本章內(nèi)容,繪制知識(shí)結(jié)構(gòu)圖
. 一個(gè)數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯(cuò)誤的是()A.任何數(shù)的絕對(duì)值一定是非負(fù)數(shù); B.一個(gè)負(fù)數(shù)的絕對(duì)值一定是正數(shù);C.一個(gè)正數(shù)的絕對(duì)值一定是正數(shù); D.一個(gè)數(shù)不是正數(shù)就是負(fù)數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個(gè)有理數(shù)的和是正數(shù),積是負(fù)數(shù),則這兩個(gè)有理數(shù)( )A.都是正數(shù); B.都是負(fù)數(shù); C.一正一負(fù),且正數(shù)的絕對(duì)值較大; D.一正一負(fù),且負(fù)數(shù)的絕對(duì)值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當(dāng)n為正整數(shù)時(shí), 的值是()
一、教學(xué)目標(biāo):1、會(huì)辨認(rèn)基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會(huì)畫基本幾何體的三視圖,會(huì)判斷簡單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實(shí)背景中抽象出空間幾何體和基本平面圖形,進(jìn)一步認(rèn)識(shí)點(diǎn)、線、面。6、獲得一些研究問題的方法和經(jīng)驗(yàn),發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識(shí)。7、體驗(yàn)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,初步形成對(duì)數(shù)學(xué)整體性的認(rèn)識(shí)。教學(xué)重點(diǎn):在具體的情境中,認(rèn)識(shí)一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點(diǎn):是描述幾何體的特征,對(duì)幾何體進(jìn)行分類。二、設(shè)疑自探1、梳理本章知識(shí)(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個(gè)生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)
本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識(shí)基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過程。在總結(jié)出同類項(xiàng)定義后,沒有按通常的做法,即直接分析定義中的兩個(gè)條件,強(qiáng)調(diào)兩個(gè)條件缺一不可,而是通過一組練習(xí),讓學(xué)生在具體問題中體會(huì)定義中的兩個(gè)條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識(shí),而后,分析定義中的兩個(gè)條件,這樣會(huì)給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計(jì)既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會(huì)更顯數(shù)學(xué)教學(xué)的枯燥,而且會(huì)使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項(xiàng)的概念時(shí),當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項(xiàng)。
1.會(huì)用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個(gè)角的和、差、倍、分的意義,會(huì)進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測量∠α的度數(shù).請你運(yùn)用所學(xué)的知識(shí)分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
方法總結(jié):由絕對(duì)值的定義可知,一個(gè)數(shù)的絕對(duì)值越小,離原點(diǎn)越近.將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對(duì)值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對(duì)值的非負(fù)性已知|x-3|+|y-2|=0,求x+y的值.解析:一個(gè)數(shù)的絕對(duì)值總是大于或等于0,即為非負(fù)數(shù),若兩個(gè)非負(fù)數(shù)的和為0,則這兩個(gè)數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個(gè)非負(fù)數(shù)的和為0,則這幾個(gè)數(shù)都為0.三、板書設(shè)計(jì)絕對(duì)值相反數(shù)絕對(duì)值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等兩個(gè)負(fù)數(shù)比較大小:絕對(duì)值大的反而小絕對(duì)值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語,是本章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容.教材從幾何的角度給出絕對(duì)值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義的.
方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對(duì)于含有絕對(duì)值的式子的化簡,要根據(jù)絕對(duì)值內(nèi)的式子的正負(fù),去掉絕對(duì)值符號(hào).探究點(diǎn)四:含括號(hào)的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價(jià),售出40件后,由于庫存積壓,調(diào)整為按售價(jià)的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價(jià)為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價(jià)與后60件的售價(jià)即可確定出總售價(jià);(2)由“利潤=售價(jià)-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價(jià)為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號(hào)法則和熟練運(yùn)用合并同類項(xiàng)的法則.
1. 小明的腳長23.6厘米,鞋號(hào)應(yīng)是 號(hào)。2.小亮的腳長25.1厘米,鞋號(hào)應(yīng)是 號(hào)。3.小王選了25號(hào)鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會(huì)到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動(dòng)中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級(jí)南,女生各10名右眼裸視的檢測結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個(gè)問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂通過本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測量、調(diào)查、實(shí)驗(yàn)、查閱文獻(xiàn)資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會(huì)指出鞋碼和腳長之間的關(guān)系等)
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號(hào)連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來表示相應(yīng)的數(shù),再利用它們對(duì)應(yīng)點(diǎn)的位置來判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動(dòng)問題點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對(duì)解析:∵點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動(dòng)4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動(dòng)4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動(dòng)要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.
在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語言表達(dá)他們的想法,在估算的過程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對(duì)“畫能掛上去嗎”這個(gè)問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動(dòng)學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來越小的趨勢.2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對(duì)比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來,完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個(gè)句子沒有對(duì)某一件事情作出任何判斷,那么它就不是命題.活動(dòng)目的:通過課后的總結(jié),使學(xué)生對(duì)定義、命題等概念有更清楚的認(rèn)識(shí),讓學(xué)生在頭腦中對(duì)本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對(duì)定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對(duì)命題的學(xué)習(xí)有了清楚的認(rèn)識(shí)。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級(jí)數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對(duì)數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對(duì)“黑客”這個(gè)名詞的不同理解更好地悟出“定義”的含義。
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識(shí)看起來很簡單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;