提示:要學會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關系列方程。2.Flash動畫,情景再現(xiàn).3.學法小結(jié):(1)對較復雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導下列出方程組。4.變式訓練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。?,試求原來的3位數(shù).
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
解析:(1)根據(jù)題設條件,求出等量關系,列一元一次方程即可求解;(2)根據(jù)題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數(shù)關系的實際應用分類討論思想、數(shù)形結(jié)合思想本課時結(jié)合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調(diào)動了學生的思考能力,為后面的學習打下基礎.
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應用
1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):
【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關系式后運用函數(shù)性質(zhì)來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
教學過程: 一、導入:師生問好!二、新課教學:1、教師課前要了解各小組的學習情況:戲種以及相關知識等有關資料的準備情況。2、播放歌曲《看大戲》提問:上節(jié)課我們了解了什么戲???今天哪個小組的同學向大家介紹他們學習的內(nèi)容? 3、欣賞《花木蘭》選段──誰說女子不如男設問的問題:▲簡單了解《花木蘭》的劇情?!3焊惺芤魳凤L格。 4、欣賞豫劇《誰說女子不如男》設問的問題:▲揭示曲名:《誰說女子不如男》?!鴺非男捎蓭讉€部分組成?各部分的速度、情緒怎樣?分別描繪了怎樣的情景?▲這首戲曲的主要伴奏樂器是什么?▲猜一猜:這首樂曲采用哪個戲種的基本音調(diào)?
一、中華人民共和國從世界銀行申請獲得貸款,用于支付 項目的費用。部分貸款將用于支付工程建筑、 等各種合同。所有依世界銀行指導原則具有資格的國家,都可參加招標。二、中國 公司(以下簡稱A公司)邀請具有資格的投標者提供密封的標書,提供完成合同工程所需的勞力、材料、設備和服務。三、具有資格的投標者可從以下地址獲得更多的信息,或參看招標文件:中國A公司(地址)四、第一位具有資格的投標者在交納 美元(或人民幣),并提交書面申請后,均可從上述地址獲得招標文件。五、每一份標書都要附一份投標保證書,且應不遲于 (時間)提交給A公司。六、所有標書將在 (時間)當著投標者代表的面開標。七、如果具有資格的國外投標者希望與一位中國國內(nèi)的承包人組建合資公司,需在投標截止日期前30天提出要求。業(yè)主有權決定是否同意選定的國內(nèi)承包人。八、標前會議將在 (時間) (地址)召開。投標者須知一、工程概述(根據(jù)具體情況寫)二、資金來源
【教學目標】1.了解韓愈關于尊師重道的論述和本文的思想意義。2.學習借鑒本文正反對比的論證方法。3.積累文言知識,掌握實詞“傳、師、從”,虛詞“以、也、則、于、乎、所以”等詞語的意義和用法,區(qū)別古今異義詞語。4.樹立尊師重教的思想,培養(yǎng)謙虛好學的風氣。【教學重點和難點】1.了解文章的整體思路。2.學習本文正反對比論證的方法?!窘虒W方法】教師講授;學生自主探究;多媒體輔助?!菊n時分配】兩課時。【教學過程】第一課時一、導入并解題初中時我們學過一篇課文叫《馬說》,《馬說》實際上是“說馬”,今天,我們來學習一篇“說老師”,說“從師風尚”的文章,叫《師說》?!罢f”是一種文體,偏重于議論,可先敘后議,也可夾敘夾議。
2.送信。實物投影儀演示反饋。(1)方法說明。你是怎么想的?(2)錯誤糾正。分層校對:做完的先互相批改,然后集體先校對丁當組題,再校對一休組題。重點講評一休組題目。六、總結(jié)今天你有哪些收獲?(1)退位減法要注意什么?不要忘記退位。(2)退位減法的方法。為學生提供學習材料,讓學生通過活動聯(lián)系生活實際學習新知,讓學生感受到數(shù)學源于生活,用于生活;采用分層教學,整個學習過程都是學生在小組中合作研究、探索中完成的;然后通過多種形式的練習加以鞏固;注重學習過程的開放;通過小組合作,培養(yǎng)學生善于發(fā)表自己的觀點,會傾聽同學的意見的能力。同時也培養(yǎng)學生學會提出問題、解決問題的能力。
四、課堂小結(jié)今天我們一起研究了什么問題?板書課題:求一個數(shù)比另一個數(shù)多幾的應用題解答這樣的問題,應該怎樣進行分析?在老師的提問下,學生回憶分析思路。最后,小結(jié)上課時男女學生小旗的情況,得出數(shù)目后問:你能根據(jù)今天學習的內(nèi)容提出問題并列式計算嗎?教學反思:求一個數(shù)比另一個數(shù)多幾的應用題,本節(jié)課屬于計算教學。傳統(tǒng)的計算教學往往只注重算理、單一的算法及技能訓練,比較枯燥。依據(jù)新的數(shù)學課程標準,在本節(jié)課的教學設計上,創(chuàng)設生動具體的教學情境,使學生在愉悅的情景中學習數(shù)學知識。鼓勵學生獨立思考、自主探索和合作交流。尊重學生的個體差異,滿足多樣化的學習需求。 在課堂過程中,還有小部分學生不能充分地展開自己的思維,得到有效的學習效果,讓所有的學生基本都學會如何去展現(xiàn)自己的有效的學習方式,這是我的教學目標。
[設計意圖:鞏固減法的意義,培養(yǎng)學生初步的思維能力。](2)組織學生自己先算一算,教師巡視,捕捉學生學習信息,糾正不良學習習慣。[設計意圖:通過巡視,及時捕捉學生的學習信息,發(fā)現(xiàn)問題及時解決;把培養(yǎng)學生良好的計算習慣、審題習慣及檢查習慣落到實處。](3)組織學生全班交流計算方法。組織學生在全班交流解決計算“32-2=”的方法,引導學生理解“32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”。如果學生用其他的方法來計算,只要正確,也要肯定。[設計意圖:同前面一樣,鞏固數(shù)的組成,訓練每一個學生“述說整十數(shù)加一位數(shù)相應減法的計算過程”,突破難點。]3.加減法對比組織學生比較“30+2=32”和“32-2=30”,并說一說有什么發(fā)現(xiàn),使學生認識到“3個十和2個一組成32,所以30加2等于32;反過來,32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”[設計意圖:強化加減法意義的聯(lián)系,培養(yǎng)學生初步的思維能力。]
一、活動內(nèi)容分析西歐從5世紀末至9世紀歷經(jīng)四個世紀完成了由奴隸制度向封建制度的轉(zhuǎn)變,西歐中世紀即西歐的封建社會,形成了與中國封建社會不同的特點。理解這些特點,將有助于學生理解西歐在世界上最早進入資本主義社會的原因。盡管神學世界觀籠罩了西方中世紀,是黑暗的,但是應看到,自古代流傳下來的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來。歐洲的中世紀表面上看起來是一個陰森森的一千年(五百年到一千五百年),但實際上確實孕育了西方近代文明的重要時期。從探究活動的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關,有承上啟下的作用。二、活動重點設計理解西歐封建社會的政治特點及對后世的影響;正確認識基督教文明
一、教材分析第四單元“發(fā)展社會主義市場經(jīng)濟”旨在培養(yǎng)社會主義的建設者,高中生是未來社會主義現(xiàn)代化建設的主力軍,是將來參與市場經(jīng)濟活動的主要角色,承擔著全面建設小康社會的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國人民的生活水平達到總體小康這一偉大成就,然后從微觀和宏觀兩個方面介紹總體小康的成就。同時指出,我國現(xiàn)在達到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟建設的新要求”。這一目專門介紹全面建設小康社會的經(jīng)濟目標,也是學生要重點把握的內(nèi)容。二、教學目標(一)知識目標(1)識記總體小康的建設成就在宏觀和微觀上的表現(xiàn),全面建設小康社會的經(jīng)濟建設目標。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會建設進程是不平衡的發(fā)展過程。(3)運用所學知識,初步分析全面建設小康社會的意義。