本節(jié)通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
《數(shù)學(xué)1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學(xué)生根據(jù)具體的函數(shù)圖象能夠借助計(jì)算機(jī)或信息技術(shù)工具計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會(huì)函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點(diǎn)內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應(yīng)用,同時(shí)又為高中數(shù)學(xué)中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.通過具體實(shí)例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計(jì)算器用二分法求方程的近似解.3.會(huì)用二分法求一個(gè)函數(shù)在給定區(qū)間內(nèi)的零點(diǎn),從而求得方程的近似解. a.數(shù)學(xué)抽象:二分法的概念;b.邏輯推理:運(yùn)用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實(shí)形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側(cè)畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠(yuǎn)處成塊的農(nóng)田,矩形的農(nóng)田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時(shí),把他們畫成對應(yīng)的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進(jìn)行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點(diǎn)N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個(gè)坐標(biāo)系,注意斜坐標(biāo)系夾角為45°或135°;(2)與坐標(biāo)軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>
1.探究:根據(jù)基本事實(shí)的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個(gè)平面,由此可以想到,如果一個(gè)平面內(nèi)有兩條相交或平行直線都與另一個(gè)平面平行,是否就能使這兩個(gè)平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個(gè)平面內(nèi)有兩條平行直線與另一個(gè)平面平行,這兩個(gè)平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內(nèi)畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個(gè)平面內(nèi)有兩條相交直線與另一個(gè)平面平行,這兩個(gè)平面是平行的,如圖,平面ABCD內(nèi)兩條相交直線A’C’,B’D’平行。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認(rèn)識(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運(yùn)算? 問題八:非零共線向量怎樣做減法運(yùn)算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時(shí)間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠(yuǎn)垂直,也就是AB垂直于地面上所有過點(diǎn)B的直線。而不過點(diǎn)B的直線在地面內(nèi)總是能找到過點(diǎn)B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個(gè)平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字?jǐn)⑹觯喝绻本€l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做交點(diǎn).②圖形語言:如圖.畫直線l與平面α垂直時(shí),通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點(diǎn)∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn).若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點(diǎn)O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點(diǎn),∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當(dāng)∠EOF=60°時(shí),EF=OE=OF=1,當(dāng)∠EOF=120°時(shí),取EF的中點(diǎn)M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
二、說教學(xué)目標(biāo)知識和技能:能結(jié)合生活情景辨認(rèn)銳角和鈍角,能口述銳角和鈍角的特征。 過程和方法:通過觀察、操作、分類、比較等數(shù)學(xué)教學(xué)活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力,合作意識,激發(fā)學(xué)生的創(chuàng)新思維。在對簡單物體和圖形的形狀的探索過程中,發(fā)展空間觀念。情感、態(tài)度、價(jià)值觀:通過實(shí)踐,使學(xué)生獲得成功的體驗(yàn),建立自信心。通過生活情境的創(chuàng)設(shè),感受生活中處處有數(shù)學(xué),培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)重點(diǎn):能辨認(rèn)銳角、鈍角。知道銳角、鈍角的特征。教學(xué)難點(diǎn):能辨認(rèn)銳角、鈍角。三、說教法、學(xué)法這一節(jié)課的教學(xué)對象是二年級的學(xué)生。他們年齡小、好動(dòng)、愛玩、好奇心強(qiáng),在四十分鐘的教學(xué)中容易疲勞,注意力容易分散。根據(jù)這一特點(diǎn),為了抓住他們的興趣,激發(fā)他們的好奇心,我采用了愉快式教學(xué)方法為主,創(chuàng)設(shè)情境,設(shè)計(jì)了生動(dòng)有趣的簡筆畫,讓學(xué)生在圖所創(chuàng)設(shè)的情境中學(xué)習(xí)。同時(shí)我還采用了動(dòng)像發(fā)現(xiàn)教學(xué)法,讓孩子們通過合作交流去發(fā)現(xiàn)角和展示角,這樣既活躍了學(xué)生的思想,激發(fā)了認(rèn)知興趣,而且充分發(fā)揮學(xué)生的學(xué)習(xí)積極性。
一、說教材1.教學(xué)內(nèi)容:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書人教版小學(xué)數(shù)學(xué)一年級上冊57頁及相關(guān)的練習(xí)題。2.教材的地位和作用:這節(jié)課是人教版小學(xué)數(shù)學(xué)一年級上冊第五單元第57頁的內(nèi)容,是在學(xué)了6、7加減法中的用數(shù)學(xué):金色的秋天后進(jìn)行教學(xué)的。大家知道,新教材中的“用數(shù)學(xué)”,類似于老教材中的應(yīng)用題。通過“用數(shù)學(xué)”教學(xué),既要求學(xué)生找到問題的答案,又要求學(xué)生在解決問題的過程中,掌握數(shù)量關(guān)系和應(yīng)用題的結(jié)構(gòu)特征,為學(xué)習(xí)更復(fù)雜的應(yīng)用題打好基礎(chǔ)。3.教學(xué)目標(biāo):(1)知識目標(biāo):使學(xué)生能夠正確掌握算理,能根據(jù)已知量和問號之間的關(guān)系選擇合適的計(jì)算方法列式計(jì)算。(2)能力目標(biāo):培養(yǎng)和提高學(xué)生用所學(xué)知識解決實(shí)際問題的能力。(3)情感目標(biāo):讓學(xué)生體驗(yàn)學(xué)數(shù)學(xué),用數(shù)學(xué)的樂趣,在學(xué)習(xí)中感受到熱愛自然保護(hù)環(huán)境方面的教育。4.教學(xué)重點(diǎn):讓學(xué)生用學(xué)過的知識解決簡單的實(shí)際問題。5.教學(xué)難點(diǎn):學(xué)生學(xué)會(huì)選擇解決問題的方法。
(一)教學(xué)內(nèi)容我說課的內(nèi)容是人教版小學(xué)數(shù)學(xué)四年級第三單元第一小節(jié)“加法運(yùn)算定律”中的第1課時(shí)的內(nèi)容,其內(nèi)容包括:第17頁的例1以及18頁的“做一做”第一題、第19頁練習(xí)五第1~3題的部分習(xí)題。(二)教材地位數(shù)學(xué)中,研究數(shù)的運(yùn)算,再給出運(yùn)算的定義之后,最主要的基礎(chǔ)工作就是研究該運(yùn)算的性質(zhì)。在運(yùn)算的各種性質(zhì)中,最基本的幾條性質(zhì),通常稱為“運(yùn)算定律”。加法是數(shù)學(xué)中最基本的運(yùn)算之一。通過本課時(shí)的學(xué)習(xí),首先,可使學(xué)生對加法的認(rèn)識從感性上升到理性。其次,用不完全歸納法概括出加法交換律的文字表述形式和字母形式,一方面提高知識的抽象概括程度,另一方面為以后正式講用字母表示數(shù)打下初步基礎(chǔ)。(三)教學(xué)目標(biāo)1、通過學(xué)習(xí),使學(xué)生理解和掌握加法交換律,并會(huì)運(yùn)用加法交換律進(jìn)行簡便計(jì)算。2、讓學(xué)生學(xué)會(huì)用符號或字母來表示加法交換律。3、培養(yǎng)學(xué)生抽象概括能力,引導(dǎo)學(xué)生由感性認(rèn)識上升到一定的理性認(rèn)識。
一、教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)四年級上冊第23~25頁全部內(nèi)容二、編寫意圖:“計(jì)算工具的認(rèn)識”分別介紹了計(jì)算工具算盤和計(jì)算器,還安排了有關(guān)計(jì)具的發(fā)展歷史和現(xiàn)狀的閱讀材料。教材安排了較多的直觀圖戰(zhàn)士了算盤和計(jì)算器的實(shí)際應(yīng)用、算盤和計(jì)算器的結(jié)構(gòu),比較形象直觀,讓學(xué)生在觀察和活動(dòng)中認(rèn)識常用的計(jì)算工具。三、教學(xué)目標(biāo):鑒于以上分析,我把本課的教學(xué)目標(biāo)定位為以下三個(gè)方面:1.讓生初步認(rèn)識計(jì)算器,了解計(jì)算器的基本功能,會(huì)使用計(jì)算器進(jìn)行大數(shù)目的計(jì)算,通過計(jì)算探索發(fā)現(xiàn)一些簡單的數(shù)學(xué)規(guī)律,解決一些簡單的實(shí)際問題。2.通過對計(jì)算器的運(yùn)用,體驗(yàn)用計(jì)算器進(jìn)行計(jì)算的優(yōu)點(diǎn),進(jìn)一步培養(yǎng)對數(shù)學(xué)學(xué)習(xí)的興趣,感受用計(jì)算器計(jì)算在人類生活和工作中的價(jià)值。3.在自主探究的學(xué)習(xí)過程中培養(yǎng)學(xué)生的問題意識和創(chuàng)新意識,在解決實(shí)際問題中,滲透節(jié)約、環(huán)保等方面意識,使學(xué)生受到思想教育。
(一)情境導(dǎo)入以鮮明的色彩、生動(dòng)的畫面演繹激光從地球發(fā)送到月球的全過程,既引出了學(xué)過的線段,又激發(fā)學(xué)生探究新知的欲望。(二) 質(zhì)疑探究在講授新課的過程中,我選擇了多媒體的教學(xué)手段。這些教學(xué)手段的運(yùn)用可以使抽象的知識具體化,枯燥的知識生動(dòng)化,乏味的知識興趣化。1、認(rèn)識線段。通過多媒體演繹,使學(xué)生對于抽象的“線段”的認(rèn)識建立在具體的生活模型基礎(chǔ)上,有助于學(xué)生認(rèn)識圖形特征,形成表象,感受生活中處處有數(shù)學(xué)。這一環(huán)節(jié)主要引導(dǎo)學(xué)生回顧所學(xué)的線段知識,通過畫圖、說特征、舉例子、講授字母表示法這一系列活動(dòng),使學(xué)生進(jìn)一步認(rèn)識線段。2、 認(rèn)識射線。多媒體課件形象、生動(dòng)地演示了激光在宇宙中不斷延長,再延長,通過直觀感知,在頭腦中建立“無限延長”的表象,幫助學(xué)生理解“無限延長”的含義。通過教師引導(dǎo)和小組合作,共同學(xué)習(xí)射線的畫法、特征及字母表示法,進(jìn)而把所學(xué)知識還原到生活當(dāng)中,讓學(xué)生明確數(shù)學(xué)與生活緊密聯(lián)系。
一、教材分析本課是人教版3年級上冊數(shù)學(xué)第3單元的第1課時(shí),本課內(nèi)容是在學(xué)習(xí)了長度單位米和厘米的基礎(chǔ)上進(jìn)行教學(xué)的,通過學(xué)習(xí),使學(xué)生對常用的長度單位有一個(gè)比較完整的認(rèn)識,對于今后學(xué)習(xí)面積單位和體積單位,發(fā)展學(xué)生的空間觀念具有重要意義。二、教學(xué)目標(biāo):根據(jù)對教材的理解,同時(shí)結(jié)合學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,制定如下教學(xué)目標(biāo):(1)、知識目標(biāo):認(rèn)識長度單位毫米和分米, 初步建立1毫米和1分米的長度觀念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能進(jìn)行長度單位間的簡單換算。(2)、能力目標(biāo):通過估一估、量一量等活動(dòng),培養(yǎng)和發(fā)展學(xué)生的空間觀念、估測能力、動(dòng)手操作能力和推理能力。(3)、情感目標(biāo):經(jīng)歷實(shí)際測量的過程,體會(huì)長度單位在日常生活中的應(yīng)用,感受數(shù)學(xué)和生活的密切聯(lián)系,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣。
三、說教材的重點(diǎn)和難點(diǎn)教學(xué)重點(diǎn)是:通過觀察、討論,讓學(xué)生探究發(fā)現(xiàn)三角形的不同分類方法,從而進(jìn)一步掌握三角形的特征。教學(xué)難點(diǎn)是:通過實(shí)踐操作,讓學(xué)生理解掌握等腰三角形和等邊三角形的基本特征及其關(guān)系。四、說教學(xué)理念1、波利亞說:“學(xué)習(xí)任何知識的最佳途經(jīng)都是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的規(guī)律、性質(zhì)和內(nèi)在聯(lián)系”。學(xué)生的學(xué)習(xí)過程是一個(gè)主動(dòng)建構(gòu)知識的過程,教師要激活學(xué)生先前的知識經(jīng)驗(yàn),創(chuàng)設(shè)具體情境,讓學(xué)生在經(jīng)歷、體驗(yàn)、探索中真正感悟。2、體現(xiàn)學(xué)生的主體作用,把握好教師的主導(dǎo)地位,讓學(xué)生在活動(dòng)中體驗(yàn),在體驗(yàn)中學(xué)習(xí)、在學(xué)習(xí)中感悟。 3、突出體現(xiàn)教學(xué)的16字原則:主體探究、創(chuàng)境激趣、合作互動(dòng)、創(chuàng)新發(fā)展。 五、說教法1、運(yùn)用操作法,確定每個(gè)三角形的三個(gè)內(nèi)角各是什么角。 2、通過比較法,得出各個(gè)三角形的異同。3、采用探究法,找出等腰三角形和等邊三角形的聯(lián)系。 4、通過游戲與練習(xí)內(nèi)化新知。
二、小組交流,梳理知識。1、師:剛才老師巡視時(shí)發(fā)現(xiàn)有的組準(zhǔn)備特別充分,下面我們就有請各小組到前面來和大家交流。第一部分,面積的含義,哪個(gè)小組愿意先來?(指一小組上前匯報(bào))小組交流第一部分面積的定義。學(xué)生補(bǔ)充。師小結(jié)進(jìn)行評價(jià)。2、師:好,接下來面積單位這部分內(nèi)容,哪個(gè)小組愿意來?看看哪個(gè)小組最勇敢?小組交流第二部分面積單位。學(xué)生補(bǔ)充。師小結(jié)進(jìn)行評價(jià)。師:看大家對面積單位的內(nèi)容認(rèn)識得這樣清楚,老師也給大家補(bǔ)充個(gè)小題,考考你,有信心嗎?看大屏幕,巧填單位。房間面積是18( ) 臥室的門高約2( )課桌面的面積約是24( ) 果園的面積大約是3( )爸爸身高是180( ) 小學(xué)生的一顆大門牙大約是1( )山海關(guān)區(qū)的面積約是192( ) 3、師:真棒,大家不但認(rèn)識的清楚,還能靈活運(yùn)用。了不起,咱們接著往下交流。小組交流第三部分面積單位間的進(jìn)率。學(xué)生補(bǔ)充。
一、教材分析《圓柱的表面積》是九年義務(wù)教育小學(xué)數(shù)學(xué)六年級下冊(人教版)第21-22頁例3例4,第21-22頁“做一做”,練習(xí)四的教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生已經(jīng)探索并掌握圓柱的基本特征的基礎(chǔ)上教學(xué)的。同時(shí),此前對圓面積公式的探索以及對長方體特征和表面積計(jì)算方法的探索也為了學(xué)習(xí)本課內(nèi)容奠定了知識的基礎(chǔ)。教材設(shè)置了兩個(gè)例題。例3主要引導(dǎo)學(xué)生通過動(dòng)手操作探索圓柱側(cè)面積的計(jì)算方法。然后,通過例4引導(dǎo)學(xué)生利用圓柱表面積的計(jì)算方法解決實(shí)際問題。教材這樣安排,意在讓學(xué)生經(jīng)歷圓柱側(cè)面積、表面積計(jì)算方法的推導(dǎo)過程,理解這些方法的來源,通過自己的操作,觀察、比較、推理、歸納等經(jīng)歷知識形成的過程,完善關(guān)于幾何形體的知識結(jié)構(gòu),豐富學(xué)生“空間與圖形”的學(xué)習(xí)經(jīng)驗(yàn),形成初步的空間觀念,為今后進(jìn)一步學(xué)習(xí)形體知識打下基礎(chǔ)。
1.說教材《比例的意義和基本性質(zhì)》是人教版小學(xué)數(shù)學(xué)六年級下冊第四單元的內(nèi)容,這部分內(nèi)容是在學(xué)習(xí)了比的有關(guān)知識并掌握了一些常見的數(shù)量關(guān)系的基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比的知識”的深化,也是后面學(xué)習(xí)解比例知識的基礎(chǔ),并為學(xué)習(xí)比例的應(yīng)用,特別是為正、反比例及其應(yīng)用打好基礎(chǔ)。比例的知識在生活和生產(chǎn)中有著廣泛的應(yīng)用,所以本節(jié)課的知識就顯得尤為重要。2.教學(xué)目標(biāo)我以《新課程標(biāo)準(zhǔn)》為依據(jù),結(jié)合小學(xué)數(shù)學(xué)教材編排的意圖和學(xué)生的實(shí)際情況,擬定以下教學(xué)目標(biāo):(1)知識與技能目標(biāo):使學(xué)生理解并掌握比例的意義和基本性質(zhì),認(rèn)識比例各部分名稱,知道比和比例的區(qū)別。(2)能力目標(biāo):培養(yǎng)學(xué)生自主參與的意識和主動(dòng)探究的精神,培養(yǎng)學(xué)生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學(xué)生的思維。 (3)情感與態(tài)度目標(biāo):在教學(xué)中滲透愛國主義教育,培養(yǎng)學(xué)生善于觀察、勤于思考、樂于探究的學(xué)習(xí)習(xí)慣。3.教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):理解比例的意義與探究基本性質(zhì)。教學(xué)難點(diǎn):運(yùn)用比例的意義或性質(zhì)判斷兩個(gè)比能否組成比例,并能正確地組成比例。