(2)結合實際問題情境,學會分析量與量之間的關系。(3)了解圖表在生活中的應用,能看懂用圖來描述的事件或行為。2、過程與方法經(jīng)歷運用圖表描述事件行為的過程,提高學生的現(xiàn)象分析能力。3、情感、態(tài)度與價值觀感受數(shù)學與生活的密切聯(lián)系,體會數(shù)學圖形語言簡潔明了的特點,增強數(shù)學的應用意識。在教學中要讓學生結合具體的生活情境,在圖表中尋找描述生活情境的信息,以此來認識、了解一些表示數(shù)量關系的圖表,同時感受用數(shù)學圖表來描述事件的簡潔性。根據(jù)上述觀點,我認為本課的重點在于:從縱軸和橫軸所表示的意義來認識圖表,并能從圖表中獲取信息。難點則是:怎樣看圖,如何用語言去描述事件發(fā)生的過程。新時代的課堂,是信息技術的課堂,因此本節(jié)課我設計了一個多媒體課件予以輔助教學。
2、測量。各個組的成員根據(jù)上面的設計方案在小組長的帶領下到操場測量相關數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結果計算相關物體高度。時間為2分鐘。要求:獨立計算,并填寫好實驗報告上。(三)展示測量結果。時間為3分鐘。各組都將自己計算的結果報告,看哪些同學計算準確些?(四)整理實驗報告,上交作為作業(yè)。此活動主要是讓學生通過動手實踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學習數(shù)學的重要性,培養(yǎng)學生學習數(shù)學的興趣和激情,增強團隊意識。四、小結:本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設計1、目標展示在小黑板上2、自主學習的問題展示在小黑板上3、學生設計的方案示意圖在小組展示板上展示
一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學教材第一章第一節(jié)的教學內容,本節(jié)是軸對稱圖形的應用,是研究等腰三角形的開篇。通過本章節(jié)的學習,可以豐富和加深學生對已學圖形的認識,為以后的圖形學習和證明打好基礎。本節(jié)在編排上考慮學生的認知規(guī)律,從學生容易接受的動手操作找規(guī)律開始到幾何畫板的驗證再過渡到幾何證明與應用。根據(jù)課程標準,確定本節(jié)課的目標為:【教學目標】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質;能夠用等腰三角形的知識解決相應的數(shù)學問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學生思考探究數(shù)學的能力;通過例題與練習,提高學生添加輔助線解決問題的能力。3.情感、態(tài)度與價值觀 在探索等腰三角形性質的過程中體會軸對稱圖形的美,感受數(shù)學與生活的聯(lián)系;在例題教學中,感受數(shù)學之美;培養(yǎng)學生分析解決問題的能力,使學生養(yǎng)成良好的學習習慣.
4.已知一個三角形的兩邊長分別是4cm、7cm,則這個三角形的周長的取值范圍是什么?目的:主要是讓學生掌握三角形三邊的和差關系具體的應用,并能應用生活中實際問題。同學之間可以合作交流互相探討,發(fā)展學生空間觀念、推理能力,使學生善于觀察生活、樂于探索研究,激發(fā)學生學習數(shù)學的積極性,從中適當?shù)膶W生進行德育教育,教育學生穿越馬路時間越長就越危險。(五)課堂小結學生自我談收獲體會,說說學完本節(jié)課的困惑。教師做最終總結并指出注意事項。目的:讓學生暢所欲言,談收獲體會,教師給予鼓勵。主要是讓學生熟記新知能應用新知解決問題,培養(yǎng)學生概括總結的能力、有條理的表達能力。注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊。
煤的價格為400元/噸,生產1噸甲產品除需原料費用外,還需其他費用400元,甲產品每噸售價4600元;生產1噸乙產品除原料費用外,還需其他費用500元,乙產品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設生產甲產品x噸,乙產品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關系式;(2)寫出y與x的函數(shù)關系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當生產的甲產品的數(shù)量x變化時,那么乙產品的產量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關系為總利潤y=甲產品的利潤+乙產品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產1噸甲產品獲利為4600-10×200-4×400-400=600(元);生產1噸乙產品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結:根據(jù)條件求一次函數(shù)的關系式時,要找準題中所給的等量關系,然后求解.
由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數(shù)形結合的意識,充分提高學生數(shù)形結合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉化的數(shù)學思想和方法.
2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.
由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調本課的重點內容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關系.引導學生自己對所學知識和思想方法進行歸納和總結,從而形成自己對數(shù)學知識的理解和解決問題的方法策略.
探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結果,不寫分析過程)解析:(1)先設該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結:解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.
解析:當截面與軸截面平行時,得到的截面的形狀為長方形;當截面與軸截面斜交時,得到的截面的形狀是橢圓;當截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結:用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結:用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設計教學過程中,強調學生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學生的情感態(tài)度和價值觀.
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
學習目標:1、知識與技能(1)會用字母、運算符號表示簡單問題的規(guī)律,并能驗證所探索的規(guī)律。(2)能綜合所學知識解決實際問題和數(shù)學問題,發(fā)展學生應用數(shù)學的意識,培養(yǎng)學生的實踐能力和創(chuàng)新意識。2、過程與方法(1)經(jīng)歷探索數(shù)量關系,運用符號表示規(guī)律,通過驗算驗證規(guī)律的過程。(2)在解決問題的過程中體驗歸納、分析、猜想、抽象還有類比、轉化等思維方法,發(fā)展學生抽象思維能力,培養(yǎng)學生良好的思維品質。3、情感、態(tài)度與價值觀通過對實際問題中規(guī)律的探索,體驗“從特殊到一般、再到特殊”的辯證思想,激發(fā)學生的探究熱情和對數(shù)學的學習熱情。學習重點:探索實際問題中蘊涵的關系和規(guī)律。學習難點:用字母、運算符號表示一般規(guī)律。學習過程:一、創(chuàng)景引入活動:出示一張月歷,學生任意選出3×3方格框出的9個數(shù),并計算出這9個數(shù)的和,告訴老師,老師就可以說出你所選的是哪9個數(shù)。
某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結果兩種筆共賣出60支,賣得金額87元.若設鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結果兩種筆共賣出60支,賣得金額87元”,得出等量關系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結:解題的關鍵是讀懂題意,設出未知數(shù),找到題目當中的等量關系,最后列方程.三、板書設計教學過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學生在分析實際問題情境的活動中體會數(shù)學與現(xiàn)實的密切聯(lián)系.
方法總結:讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結:典例關系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設計本節(jié)課從和我們的生活息息相關的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關系列一元一次方程解決與打折銷售有關的實際問題.審清題意,找出等量關系是解決問題的關鍵.另外,商品經(jīng)濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關的公式解決實際問題,提高學生的數(shù)學能力.
方法總結:(1)若被開方數(shù)中含有負因數(shù),則應先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質:(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學生清楚新舊知識的區(qū)別和聯(lián)系,加深學生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認結果的合理性等等.
小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.
方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關系.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關系,可求得∠AOB與∠COD的度數(shù).通過計算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結:檢驗數(shù)學結論具體經(jīng)歷的過程是:觀察、度量、實驗→猜想歸納→結論→推理→正確結論.三、板書設計為什么,要證明)推理的意義:數(shù)學結論必須經(jīng)過嚴格的論證檢驗數(shù)學結論的常用方法實驗驗證舉出反例推理證明經(jīng)歷觀察、驗證、歸納等過程,使學生對由這些方法得到的結論產生懷疑,以此激發(fā)學生的好奇心,從而認識證明的必要性,培養(yǎng)學生的推理意識,了解檢驗數(shù)學結論的常用方法:實驗驗證、舉出反例、推理論證等.
第三環(huán)節(jié):課堂小結活動內容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結:設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.