【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設(shè)計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應(yīng)先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當乘的單項式,分子也相應(yīng)地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
1、教師出示《人學通知書》,并提出以下問題:(1)同學們,你們在入學前收到入學通知書了嗎?(2)我們每一個人都收到了一份《入學通知書》,我們學校的吉祥物也收到了,看視頻回 憶自己的上學心情。2、教師播放歌曲:同學們,我們一起來聽一首好聽的歌曲。(播放課件:歌曲《上學歌》 板書課題《開開心心上學去》【完成目標一】環(huán)節(jié)二 共同回憶 感受快樂活動 2 共同回憶,感受快樂小朋友們,你們還記得我們學校的開學典禮嗎?你看到了什么?聽到了什么?感受到 了什么?【完成目標二】環(huán)節(jié)三 分享交流 拓展延伸 五、熟悉新環(huán)境1、播放課件,談心情:老師課前準備了學校各處的照片,現(xiàn)在用幻燈片展示給大家看一看。 大家說一說,這么美麗的地方你喜歡嗎?你知道可以在這些地方做什么嗎?
一.說教材。我說課的內(nèi)容是人教版課程標準實驗教科書六年級上冊的分數(shù)除法單元中的例1和例2。例1是分數(shù)除法的意義認識,例2是分數(shù)除以整數(shù)的計算。在這之前學生已經(jīng)掌握了整數(shù)除法的意義和分數(shù)乘法的意義及計算,而本課的學習將為統(tǒng)一分數(shù)除法計算法則打下基礎(chǔ)。例1先是整數(shù)除法回顧,再由100克=1/10千克,從而引出分數(shù)除法算式,通過類比使學生認識到分數(shù)除法的意義與整數(shù)除法的意義相同,都是‘已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算’。例2是分數(shù)除以整數(shù)的計算教學,意在通過讓學生進行折紙實驗、驗證,引導(dǎo)學生將‘圖’和‘式’進行對照分析,從而發(fā)現(xiàn)算法,感悟算理,同時也初步感受數(shù)形結(jié)合的思想方法。根據(jù)剛才對教材的理解,本節(jié)課的教學目標是:1、理解分數(shù)除法的意義與整數(shù)除法的意義相同。2.理解分數(shù)除以整數(shù)的計算原理,掌握計算方法,并能正確的進行計算。
一、說教材:本課時主要的內(nèi)容就是讓學生在情境中掌握兩位數(shù)加兩位數(shù)的進位加法計算,讓學生通過嘗試和探索出多種算法,體驗多種算法,然后比較出最好的算法。教學目標:1、通過具體的情境使學生更一步的理解加法的意義和提高學生的估算意識。2、通過學生的合作學習從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。3、培養(yǎng)學生的數(shù)學口語表達能力,提高學生的學習興趣。4、掌握兩位數(shù)加兩位數(shù)(進位加)豎式的寫法。重點:(1)通過學生的合作學習從而能探討出多種計算兩位數(shù)減兩位退位減法的方法。(2)掌握筆算加法的計算法則。難點:對多樣化算法進行優(yōu)化,達到正確完成計算。發(fā)展學生的估算意識、和探究意識和解決實際問題的能力。二、說教法:組織學生在前面計算的基礎(chǔ)上,自主探索出兩位數(shù)加兩位(進位加)的計算方法,并通過交流、討論,達到對算法的優(yōu)化,在通過“試一試”、“算一算”、“想一想”等形式達到知識的掌握。
說教材:(1)教學內(nèi)容:人民教育出版社出版的九年義務(wù)教育六年制小學數(shù)學教科書第三冊中的第16—17頁的例1及“做一做”,練習三1、2、3、4、題。(2)教材分析(教材的前后聯(lián)系,地位作用及編排意圖):兩位數(shù)減兩位數(shù)是學生學習筆算減法的開始,也是以后學習多位筆算減法的基礎(chǔ)。由于筆算減法是在口算減法的基礎(chǔ)上進行教學的,所以教材先安排了口算整十數(shù)減整十數(shù)、兩位數(shù)減整十數(shù)、兩位數(shù)減一位數(shù)的復(fù)習,為理解筆算做好準備。教材由兩位數(shù)減一位數(shù)的不退位減法口算引出兩位數(shù)減一位數(shù)的不退位減法的筆算。說明這種口算題也可以寫成豎式,用筆算。然后,對照直觀圖說明計算時要把相同數(shù)位對齊,從個位減起的計算順序。(3)教學目標:根據(jù)教材的編排意圖以及學生的實際,我確定本課的教學目標是:使學生理解筆算兩位數(shù)減兩位數(shù)的算理,掌握豎式的寫法和計算方法,并能正確的筆算。培養(yǎng)學生知識遷移的能力和口頭表達能力,培養(yǎng)學生仔細計算的良好學習習慣。
今天我說課的內(nèi)容是二年級上冊第二單元《100以內(nèi)的加法和減法》的第一課時,兩位數(shù)加兩位數(shù)的不進位加法。教材通過參觀博物館的情境圖引出兩位數(shù)的不進位和進位加法。本節(jié)課主要解決不進位加法豎式計算中的對位和計算順序問題。由于本節(jié)課是在學生已經(jīng)掌握兩位數(shù)加整十數(shù)、兩位數(shù)加一位數(shù)的基礎(chǔ)上學習的內(nèi)容,這堂課的關(guān)鍵是引導(dǎo)學生運用這些已有的知識經(jīng)驗,借助位值圖,通過自己的操作探究、合作學習,將新知識轉(zhuǎn)化、納入已有的認知結(jié)構(gòu),自主地學習兩位數(shù)加兩位數(shù)不進位加法的計算方法。因此本節(jié)課的目標確定為:知識與能力:1、充分利用直觀手段,幫助學生理解和掌握筆算兩位數(shù)加兩位數(shù)的方法。2、培養(yǎng)學生觀察、分析、解決問題的能力。過程與方法:運用直觀手段,創(chuàng)設(shè)有意義的問題情境和游戲活動來組織教學,讓學生通過動手操作、自主探索、合作交流等方法掌握算法,提高學習積極性,增強學習數(shù)學的興趣。
一、說教材1、教學內(nèi)容本節(jié)課是義務(wù)教育課程標準實驗教材人教版小學數(shù)學第三冊18至19頁的內(nèi)容。它是在學生學習了20以內(nèi)的退位減法、兩位數(shù)減一位數(shù)和兩位數(shù)減整十數(shù)以及兩位數(shù)減兩位數(shù)的不退位減法筆算的基礎(chǔ)上學習的。它是以后學習多位數(shù)減法的重要基礎(chǔ)。2、教學目標(1)、知識目標:使學生在理解算理的基礎(chǔ)上初步掌握兩位數(shù)退位減法的計算方法,并能正確的進行計算。(2)、技能目標:培養(yǎng)學生的動手操作能力,發(fā)展學生的思維和語言表達能力。(3)、情感目標:通過情景的創(chuàng)設(shè),培養(yǎng)學生的愛國之情,同時讓學生在自主探索算法的基礎(chǔ)上體驗到成功的喜悅。3、教學重點:本節(jié)課的重點是理解筆算兩位數(shù)退位減的算理,能正確用豎式計算。4、教學難點:理解兩位數(shù)減兩位數(shù)退位減法的算理。
課題十: 解決問題(一)教學內(nèi)容:解決問題教學目標:1、會解決有關(guān)小數(shù)除法的簡單實際問題。2、能探索出解決問題的有效方法,并試圖尋找其他方法,能表達解決問題的過程。教學過程:一、引入新課:前面我們學習了小數(shù)除法的計算,那么你會解決下面的問題嗎?(板書課題)二、自主探索(出示例11)1、先獨立思考解答。2、小組內(nèi)交流,可以先算什么?3、小組匯報,全班交流,說說不同的思路。再指名說說。三、鞏固練習1、“做一做”獨立完成,全班交流。再指名說說不同的解題思路。2、完成P34 3師:你從此題中收集到了哪些信息?要解決什么問題?如何思考?生先獨立思考,再小組交流,匯報分析過程。師小結(jié),解答問題時要找準有直接關(guān)系的條件或信息。
教學內(nèi)容:整數(shù)乘法運算定律推廣到小數(shù)乘法 (P.12頁例8和“做一做”,練習二第2題。)教學要求: 使學生理解整數(shù)乘法的運算定律對于小數(shù)同樣適用,并會運用乘法的運算定律進行一些小數(shù)的簡便計算。教學重點: 乘法運算定律中數(shù)(包括整數(shù)和小數(shù))的適用范圍。教學難點: 運用乘法的運算定律進行小數(shù)乘法的的簡便運算。教學用具:投影片若干張。教學過程:一、激發(fā):1、計算:25×95×4 25×32 4×48+6×48 102×562、在整數(shù)乘法中我們已學過哪些運算定律?請用字母表示出來。根據(jù)學生的回答,板書:乘法交換律 ab=ba乘法結(jié)合律 a(bc)=(ab)c乘法分配律 a(b+c)=ab+ac2、讓學生舉例說明怎樣應(yīng)用這些定律使計算簡便。(注意學生舉例時所用的數(shù)。)3、出示教材P.9頁的3組算式:下面每組算式左右兩邊的結(jié)果相等嗎?
教學目標:1、使學生在已有的知識基礎(chǔ)上掌握除數(shù)是兩位數(shù)的除法2、學生通過解決實際問題探討口算方法,通過實踐練習活動熟悉、掌握用整十數(shù)除的口算方法。3、培養(yǎng)學生主動遷移知識的思維習慣。教學過程:(一)情境引入、教學新知1、讓學生看課本插圖,根據(jù)圖中的對話,完整地編一道應(yīng)用題。生自由發(fā)言:國慶節(jié)很快就要到了,學校準備買一些氣球分給各個班級。如果用80個氣球,要給每班20個,可以分給幾個班?2、讓學生口算,并鼓勵算法多樣化,并讓學生說說你是怎么想的?80÷20=()個3、《做一做》練習90÷30=60÷30=80÷40=4、想一想:83÷20≈()80÷19≈(),這兩道題和例題有什么區(qū)別?聯(lián)系?能否用曾經(jīng)學過的估算和今天剛學習的除法來解決?
1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學們用方格代表紅花的照片,用我們的學具卡片擺出紅花的朵數(shù)。(學生操作,教師巡視。)師:大家說黃花的朵數(shù)能不能也可以這樣操作出?請同學們用上面的方法再操作出黃花的朵數(shù)。(學生操作)師:同學們已經(jīng)擺出了紅花的朵數(shù)和黃花的朵數(shù),怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數(shù)和黃花的朵數(shù)合并起來數(shù)一數(shù))(學生操作,教師巡視。)師:請把合并起來的數(shù)整理一下,讓人一看就能知道是多少朵好嗎?請同學們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結(jié)。2、驗證性操作實驗師:同學們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學生操作,教師巡視。)
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。