提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教部編版道德與法制三年級上冊我學習我快樂說課稿

  • 各部門工作計劃制定四篇

    各部門工作計劃制定四篇

    一、工作態(tài)度方面  針對我去年的下半年的工作態(tài)度,我想我在新年的工作中,得首先把工作態(tài)度提一提!工作態(tài)度和業(yè)務能力比起來,我以為工作態(tài)度要更重要一些。一個人業(yè)務能力再好,或者說一個人再有天賦,他沒有勤奮努力的態(tài)度,空有天賦,那他的天賦也有朝一日會被掏空,剩下一個軀殼讓整個生活都無以為繼。去年下半年里,我因為私人生活的原因,工作態(tài)度變得有些懈怠,這極大的阻礙了我的工作,讓我的業(yè)務能力就像是空有的才華一樣,放在那里生了銹。今年我會依照我自己具體要求的工作態(tài)度來改變自己,讓自己新年一整年都能夠有充沛的熱情積極應對工作,用努力和付出換來一個好的結果。

  • 干部培養(yǎng)工作計劃制定

    干部培養(yǎng)工作計劃制定

    一、實施目的  實行后備管理干部的開發(fā)及培養(yǎng)計劃,保證企業(yè)發(fā)展有充足的管理干部儲備,構成后備管理干部的“資源池”,保證后繼有人?! 《?、實施范圍  各中心、關聯(lián)公司及各加油站干部的儲備開發(fā)及培養(yǎng)?! ∪嵤r間  年月為實施準備期,年月開始正式實施。

  • 外貿(mào)部門規(guī)章制度

    外貿(mào)部門規(guī)章制度

    二、部門行政管理制度:1、不得無故遲到,或早退。2、不得上班時間內(nèi)大聲喧鬧,閑聊影響別人的工作。3、不得做與工作無關的事,QQ、MSN等聊天工具可使用,如發(fā)現(xiàn)聊天現(xiàn)象者,重罰。

  • 采購部門規(guī)章制度

    采購部門規(guī)章制度

    二、職責及管理制度1、熱愛本職工作,勤于學習新技術,了解新產(chǎn)品,注意市場信息的積累。2、廉潔奉公,不徇私舞弊,不違法亂紀,勤儉節(jié)約,講究職業(yè)道德。3、編制采購計劃。負責根據(jù)生產(chǎn)、總務、設備及檢驗等各部室物品需求計劃,編制與之相配套的采購計劃,并組織具體的實施,保證經(jīng)營過程中的物資供應。

  • 公司培訓部培訓規(guī)章制度

    公司培訓部培訓規(guī)章制度

    二)教師必須認真撰寫教案,準備電子課件。(三)教學管理人員不定期地認真對照大綱、課表、教案和“授課小結”進行檢查,發(fā)現(xiàn)問題及時向任課老師指出,對優(yōu)秀和較差者,在月度考核時給予相應的獎懲。

  • 公司部門管理規(guī)章制度

    公司部門管理規(guī)章制度

    1.3負責公司的對外公關接待工作?! ?.4為總經(jīng)理起草有關文字材料及各種報告?! ?.5保管公司行政印鑒,開具公司對外證明及介紹信?! ?.6協(xié)助總經(jīng)理做好各部門之間的業(yè)務溝通及工作協(xié)調(diào)。  1.7負責安排落實領導值班和節(jié)假日的值班。  1.8負責處理本公司對外經(jīng)濟糾紛的訴訟及相關法律事務

  • 大班數(shù)學教案:5以內(nèi)數(shù)的口頭加減法

    大班數(shù)學教案:5以內(nèi)數(shù)的口頭加減法

    2.發(fā)展表象思維。   二、重點與難點1.重點:理解加減法的意義。 2.難點:用語言表達運算過程。   三、材料及環(huán)境創(chuàng)設 1.材料:塑料小動物,雪花片等物品。1-5的數(shù)字卡。加減法圖意的圖片卡。印章。 2.環(huán)境創(chuàng)設:在數(shù)學區(qū)放置以上材料,讓幼兒操作擺弄,進行探索和復習鞏固活動。

  • 大班數(shù)學游戲教案:城堡奪旗(8的分合法)

    大班數(shù)學游戲教案:城堡奪旗(8的分合法)

    準備:數(shù)字卡 棋盤 不同顏色的棋子 旋轉六面體 各色旗 撲克牌 玩法:每組5名幼兒,一幅棋盤,每位幼兒一套1——7的撲克牌,每名幼兒持一粒不同顏色的棋子,將各自的棋子放在起點,按照自己的標志次序輪流擲旋轉六面體,擲出數(shù)字幾,就向前走幾步,如果走到?jīng)]有圖案的格內(nèi),就讓下一位幼兒擲旋轉六面體;如果走到有圖案的格子內(nèi),就大聲說出圖案的數(shù)量,并向其他幼兒提問該數(shù)字和哪一個數(shù)字合起來是8,然后與同伴一起從自己的數(shù)字卡中拿出相應的數(shù)字卡,拿對的幼兒向前走一步,拿錯的幼兒原地不動,看誰先走到終點,誰就在城堡的最底層插一面與自己棋子顏色相同的彩旗。游戲反復進行,誰的彩旗第一個到達城堡的頂端,誰就取得勝利。

  • 教師在XX中學暑期師德師風專項巡查和整治工作總結

    教師在XX中學暑期師德師風專項巡查和整治工作總結

    學校還設立舉報箱公布舉報熱線暑期安排值班人員及時收集有關教師師德師風情況的反饋息。從多角度、多渠道強化師德師風建設每位教師都受社會和人民的監(jiān)督。五、嚴格查處有償家教根據(jù)教育局規(guī)定嚴禁教師從事有償家教。除了會議上多次強調(diào)以外我校教師還簽訂“關于拒有償家教”的承諾書。同時師德師風專項巡查和整治領導小組利用暑假期間不定期深入群眾中去通過走訪調(diào)查、實地考察等途徑實時掌握我校教師是否存在“有償家教”的問題一經(jīng)發(fā)現(xiàn)及時制止并匯報教育局。至今止我校并未發(fā)現(xiàn)有師從事有償補課的現(xiàn)象??傊ㄟ^狠抓師德師風建設工作使學校教師深深體會到只有制度完善、強過程管理發(fā)現(xiàn)問題及時處理才能證師德建設有成效。這次暑期師德師風專項巡查和整治以法制學習教育和組織教師進行自查依托以“以法治?!钡闹贫裙芾?、科學評估、重在激勵手段形成良好的教師隊伍樹立教師的職業(yè)道德形象。

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學選擇性必修二變化率問題教學設計

    人教版高中數(shù)學選擇性必修二變化率問題教學設計

    導語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內(nèi)的平均速度v ?近似的描述它的運動狀態(tài)。

  • 人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    由樣本相關系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結1.線性相關系數(shù)是從數(shù)值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數(shù)要精細得多,需要注意的是線性相關系數(shù)r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數(shù)r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關,并通過樣本相關系數(shù)推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

  • 人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構成等比數(shù)列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

上一頁123...302303304305306307308309310311312313下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!