方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計(jì)算代數(shù)式.三、板書設(shè)計(jì)1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢展開教學(xué),在探究過程中可以進(jìn)一步發(fā)揮學(xué)生的主動性,盡可能地讓學(xué)生在已有知識的基礎(chǔ)上,通過自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識,進(jìn)而理解運(yùn)算法則
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗(yàn)次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:平行線中的拐點(diǎn)問題,通常需過拐點(diǎn)作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計(jì)平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
解析:根據(jù)“全等三角形的對應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應(yīng)角、對應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡單的實(shí)際問題
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計(jì)1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.
方法總結(jié):作平移圖形時,找關(guān)鍵點(diǎn)的對應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);④按原圖形順序依次連接對應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計(jì)1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運(yùn)用到生活中.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點(diǎn)是對△BED是等腰三角形認(rèn)識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計(jì)矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價(jià)值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因?yàn)镃D是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因?yàn)镈E=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請?jiān)偬砑右粋€條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計(jì)矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并會運(yùn)用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實(shí)踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計(jì)算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學(xué)先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點(diǎn)C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計(jì)菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會證明過程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
(一)、開始部分 首先,我播放《快樂小舞曲》,帶領(lǐng)幼兒一起進(jìn)入果園當(dāng)中,小朋友們其樂融融,能夠快快樂樂地進(jìn)入活動場地開始活動。其次,我讓幼兒說說果園里有什么,引導(dǎo)幼兒以觀察的方式回答老師的提問。之后,我手指幼兒面前的三棵果樹,讓他們猜猜這三棵果樹是什么樹,引導(dǎo)幼兒以想象的方式回答。 ?。ǘ?、基礎(chǔ)部分 這一部分正式進(jìn)入散文詩欣賞,我先讀一遍,幼兒欣賞,理解大概內(nèi)容,然后我提出一系列有關(guān)果樹的問題,引導(dǎo)幼兒以聽的方式來回答,并鼓勵他們大膽講述?! ∵@一部分,讓幼兒邊理解邊感受散文詩的意境美,從而讓他們知道白白的是梨花,粉色的是桃花,紅紅的是蘋果花,黃澄澄的是大梨,粉粉的是桃子,紅紅的是大蘋果,通過幼兒自由講述和老師的適當(dāng)提示,讓他們初步了解一年四季果樹的變化?! ∫陨隙际庆o態(tài)教學(xué),然后我講述散文詩第二遍,讓幼兒說說有哪些小動物,他們在干什么。根據(jù)他們的回答,我發(fā)給他們頭飾,讓他們表演,培養(yǎng)他們大膽的表演能力。最后提到的采摘豐收果實(shí)的人們也是讓幼兒表演采果實(shí),體驗(yàn)豐收的快樂。這些是動態(tài)教學(xué)?! 〗虒W(xué)中動靜結(jié)合,可激發(fā)幼兒的興趣,也可讓活動開展地生動、豐富。
《皇帝的新裝》這篇童話寫于1837年。18世紀(jì)末19世紀(jì)初,西歐資本主義得到迅速發(fā)展,而處于北歐邊陲的丹麥卻還是個君主立憲制國家。拿破侖戰(zhàn)爭最激烈的時候,丹麥統(tǒng)治階級利用英法矛盾,以中立地位大搞海上糧食貿(mào)易,引起英國不滿,英國要求丹麥交出從事貿(mào)易的艦隊(duì)和商船,成為英國的附庸國。丹麥拒絕這一要求,英軍于1807年炮擊哥本哈根,摧毀了丹麥的艦隊(duì),丹麥便由中立倒向拿破侖一邊,成為交戰(zhàn)國。8年后,拿破侖戰(zhàn)敗,丹麥也成為戰(zhàn)敗國而失去廣大領(lǐng)土,耗盡了錢財(cái),銀行倒閉,農(nóng)村蕭條,剛剛興起的工業(yè)也全部破產(chǎn),丹麥最終成了英國的附庸國。丹麥人民身受本國封建階級和英國資產(chǎn)階級的雙重剝削,過著饑寒交迫的貧困生活,而封建統(tǒng)治階級則窮奢極欲,揮霍無度。面對這樣的社會現(xiàn)實(shí),安徒生根據(jù)西班牙一則民間故事改編了《皇帝的新裝》,把揭露的鋒芒直指封建統(tǒng)治階級的頭子,并無情地嘲諷了貴族、宮廷的丑惡行徑,深刻地解剖了當(dāng)時社會的病狀。【資料鏈接】
文中三次寫到“看花”,有什么作用?第一次寫“看花”是春天,母親提議去北??椿ǎ胱尅拔摇痹谑㈤_的春花中感受生命的美好,重新?lián)P起生活的風(fēng)帆;第二次寫“看花”是秋天,母親央求“我”去北??淳栈?,她想在所剩不多的日子里陪“我”去看看象征生命力的菊花,渴望“我”從絕望中走出來;第三次寫“看花”是在秋天,“我”和妹妹去看花,實(shí)現(xiàn)了母親臨終的愿望。菊花象征作者對生命的渴望與眷戀。作者之所以濃墨重彩地寫菊花,恰恰是對母親生前那句“好好兒活”的深情解讀,進(jìn)一步深化了主題。三次看花,串起了人物的情感軌跡,讓我們體會到“看花”已不僅僅是看菊花,而是象征著母親的人生信念:無論命運(yùn)怎樣,人生如何,都要活得堅(jiān)韌,活出尊嚴(yán),活出生命的價(jià)值。“好好兒活”——是對癱瘓兒子與未成年女兒的深深期待,這里的母愛也不僅僅是生活中的關(guān)心愛護(hù),更是母親博大的胸懷和人生信念。
朗誦中關(guān)于停連的技巧停連是指在有聲語言的表達(dá)過程中,為表情達(dá)意的需要所做的聲音的中斷和延續(xù),是停頓和連接的統(tǒng)稱。在朗讀的多種技巧中,停連是內(nèi)容豐富且變化多彩的一種。一般來說,停連的方法主要有以下四種:一是落停,即停頓時間相對較長,句尾聲音順勢而落,聲止氣也盡。這種停頓多用于一個相對完整的意思讀完之后,句讀停頓多用在句號、問號、感嘆號處。二是揚(yáng)停,即停頓時間相對較短,停頓時聲停但是氣不斷、意不斷,停之前聲音稍上揚(yáng)或持平,聲雖止但氣未盡,停之后的聲音或緩起或突起,一聽便知道還有下文。這種停頓多用在一個意思還未讀完而中間又需要停頓的地方。三是直連,即順勢而下,連接迅速,不露連接的痕跡。多用于內(nèi)容聯(lián)系緊密,持續(xù)抒發(fā)感情的地方。一般與揚(yáng)停配合使用。四是曲連,即在連接處有一定空隙,但又環(huán)環(huán)相接,迂回向前。多用于既要連接,又要有所區(qū)分處。常與落停配合使用。
第二節(jié):突出天上“美麗的街市”。①讀第一句,語調(diào)要輕緩柔美,“我想”要稍稍拖長,重讀“縹緲”和“空中”,表示強(qiáng)調(diào),仿佛沉浸在離奇美妙的幻想之中。②第二句是詩人美好的愿望,“定然”和“有”要讀得鏗鏘有力,然后提高語調(diào),加大音量,熱烈地吟誦“美麗——的(輕聲)——街市”。③第三句既是進(jìn)一步的想象,又是具體的描述,可降低音量,放慢速度,繪聲繪色地讀。④第四句是對天河的驚嘆和贊美。讀時語氣要肯定,表示確信無疑,重讀“沒有”,而用清亮、柔和的拖音讀“珍奇”二字,以激起人們對美麗、奇妙的天街的無限向往。第三節(jié):突出天河中的牛郎織女。①第一句,“你看”后作較長的停頓,以表示詩人的遐想和提醒人們的注意。讀“那淺淺的天河”時重音放在“天河”上,“淺淺”二字則延長字音,放慢速度,以強(qiáng)調(diào)“天河”之水清亮可鑒。②第二句,應(yīng)用一種暢想、舒緩的語氣讀,讀“定然”時,音量要稍大,以增強(qiáng)對幻想的確信。③第三句,在輕輕讀過“那隔著河的”之后,要把“牛郎織女”按兩個音步的節(jié)奏讀得格外清楚、響亮。
海倫·凱勒一歲多時不幸染上疾病,致使她雙目失明、雙耳失聰,隨之又喪失了說話的能力。從此,她墜入了一個黑暗而沉寂的世界,陷入了痛苦的深淵。17歲,海倫·凱勒考進(jìn)哈佛大學(xué),還掌握了英、法、德、拉丁和希臘五種語言。大學(xué)期間,她開始寫作。畢業(yè)后,她把自己的一生獻(xiàn)給了盲人福利和教育事業(yè),并在繁忙的工作中先后完成了14部具有世界影響的著作,最著名的是其自傳《假如給我三天光明》。海倫·凱勒無比敬愛和感激自己的老師莎莉文,她說:“假如給我三天光明,我首先要長久地凝視我的老師——安妮·莎莉文!”海倫把自己的學(xué)習(xí)分成四個步驟:1.每天用三個小時自學(xué)。2.用兩個小時默記所學(xué)的知識。3.再用一個小時的時間將自己用三個小時所學(xué)的知識默寫下來。4.剩下的時間她運(yùn)用學(xué)過的知識練習(xí)寫作。在學(xué)習(xí)與記憶的過程中,她只有一個信念:她一定能夠把自己所學(xué)習(xí)的知識記下來,使自己成為一個有用的人。她每天堅(jiān)持學(xué)習(xí)10個小時以上,經(jīng)過長時間的刻苦學(xué)習(xí),她掌握了大量的知識,能熟練地背誦大量的詩詞和名著的精彩片段。