4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
思考提示在階級(jí)社會(huì)中,社會(huì)基本矛盾的解決主要是通過階級(jí)斗爭(zhēng)實(shí)現(xiàn)的,階級(jí)斗爭(zhēng)是推動(dòng)階級(jí)社會(huì)發(fā)展的直接動(dòng)力,當(dāng)舊的生產(chǎn)關(guān)系嚴(yán)重阻礙生產(chǎn)力發(fā)展,需要進(jìn)行變革時(shí),代表舊的生產(chǎn)關(guān)系的沒落階級(jí)卻不會(huì)自動(dòng)退出歷史舞臺(tái),利用舊的上層建筑維護(hù)自己的統(tǒng)治,只有代表新生產(chǎn)力發(fā)展方向的階級(jí)通過社會(huì)革命,推翻沒落的階級(jí)統(tǒng)治,才能解放生產(chǎn)力,推動(dòng)社會(huì)向前發(fā)展。所以,階級(jí)社會(huì)的進(jìn)步往往是通過激烈的社會(huì)革命實(shí)現(xiàn)的。但是,社會(huì)主義社會(huì)與階級(jí)社會(huì)不同,這是因?yàn)?,社?huì)主義社會(huì)中,生產(chǎn)力和生產(chǎn)關(guān)系、經(jīng)濟(jì)基礎(chǔ)和上層建筑之間的矛盾是一種非對(duì)抗性矛盾,不需要通過一個(gè)階級(jí)推翻另一個(gè)階級(jí)的階級(jí)斗爭(zhēng)的方式來解決,只能通過改革實(shí)現(xiàn)社會(huì)的發(fā)展,通過對(duì)生產(chǎn)關(guān)系和上層建筑進(jìn)行改革,實(shí)現(xiàn)社會(huì)主義的自我完善,從而促進(jìn)社會(huì)的發(fā)展。所以,我國經(jīng)濟(jì)體制改革是在堅(jiān)持社會(huì)主義制度的前提下,改革生產(chǎn)關(guān)系和上層建筑中不適應(yīng)生產(chǎn)力發(fā)展的一系列相互聯(lián)系的環(huán)節(jié)和方面。
1.澳大利亞混合農(nóng)業(yè)地域在生產(chǎn)結(jié)構(gòu)、經(jīng)營(yíng)方式、科技應(yīng)用、農(nóng)業(yè)專業(yè)化和地域化等方面有哪些特點(diǎn)?2.在澳大利亞混合農(nóng)業(yè)地 域形成的過程中,有哪些區(qū)位因素在起作用?學(xué)生發(fā)言,教師適當(dāng)引導(dǎo)、評(píng)點(diǎn)并作講解。[教師提問]:那么,澳大利亞的墨累—達(dá)令盆地的區(qū)位因素有什么不足之處?知識(shí)拓展:課件展示澳大利亞大分水嶺的雨影效應(yīng)的形成原理及東水西調(diào)示意圖。[教師講解]:澳大利亞東南部受大分水嶺的影響,降水集中于大分水嶺的東側(cè),在其西側(cè)形成山地的雨影效應(yīng),降水豐富地區(qū)與農(nóng)業(yè)生產(chǎn)地區(qū)分布不一致,灌溉成為澳大利亞農(nóng)牧業(yè)發(fā)展的限制性條件。因此,澳大利亞對(duì)水利工程建設(shè)很 重視,東水西調(diào)促進(jìn)了墨累—達(dá)令盆地農(nóng)牧業(yè)的發(fā)展。[課堂小結(jié)]:這節(jié)課我們學(xué)習(xí)了農(nóng)業(yè)區(qū)位選擇的基本原理。 通過學(xué)習(xí)我們了解到,農(nóng)業(yè)的區(qū)位選擇實(shí)質(zhì)上就是對(duì)農(nóng)業(yè)土地的合理利用。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對(duì)數(shù)的運(yùn)算》。其核心是弄清楚對(duì)數(shù)的定義,掌握對(duì)數(shù)的運(yùn)算性質(zhì),理解它的關(guān)鍵就是通過實(shí)例使學(xué)生認(rèn)識(shí)對(duì)數(shù)式與指數(shù)式的關(guān)系,分析得出對(duì)數(shù)的概念及對(duì)數(shù)式與指數(shù)式的 互化,通過實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對(duì)數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點(diǎn)的關(guān)鍵是抓住對(duì)數(shù)的概念、并讓學(xué)生掌握對(duì)數(shù)式與指數(shù)式的互化;通過實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),讓學(xué)生準(zhǔn)確地運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,學(xué)會(huì)運(yùn)用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)的概念,能進(jìn)行指數(shù)式與對(duì)數(shù)式的互化;2、了解常用對(duì)數(shù)與自然對(duì)數(shù)的意義,理解對(duì)數(shù)恒等式并能運(yùn)用于有關(guān)對(duì)數(shù)計(jì)算。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識(shí)作儲(chǔ)備,教科書通過利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值。課程目標(biāo)1、通過具體實(shí)例引入,推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì);2、熟練掌握對(duì)數(shù)的運(yùn)算性質(zhì),學(xué)會(huì)化簡(jiǎn),計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,對(duì)數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對(duì)數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
對(duì)數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對(duì)數(shù)的概念,通過對(duì)數(shù)的性質(zhì)和恒等式解決一些與對(duì)數(shù)有關(guān)的問題.課程目標(biāo)1、理解對(duì)數(shù)的概念以及對(duì)數(shù)的基本性質(zhì);2、掌握對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的概念;2.邏輯推理:推導(dǎo)對(duì)數(shù)性質(zhì);3.數(shù)學(xué)運(yùn)算:用對(duì)數(shù)的基本性質(zhì)與對(duì)數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對(duì)數(shù)定義與性質(zhì).重點(diǎn):對(duì)數(shù)式與指數(shù)式的互化以及對(duì)數(shù)性質(zhì);難點(diǎn):推導(dǎo)對(duì)數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達(dá)到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。
例7 用描述法表示拋物線y=x2+1上的點(diǎn)構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點(diǎn)構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變?cè)O(shè)問]本題中點(diǎn)的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實(shí)數(shù).變式2.[變條件,變?cè)O(shè)問]本題中點(diǎn)的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實(shí)數(shù).解題技巧(認(rèn)識(shí)集合含義的2個(gè)步驟)一看代表元素,是數(shù)集還是點(diǎn)集,二看元素滿足什么條件即有什么公共特性。
同志們:人勤春來早,奮進(jìn)正當(dāng)時(shí)。前天是立春,為二十四節(jié)氣之首。立春是萬物起始、一切更生之義,意味著新的一個(gè)輪回已開啟。今天區(qū)委、區(qū)政府將一季度經(jīng)濟(jì)工作、農(nóng)村工作等合并召開,進(jìn)行研究部署,主要考慮這樣統(tǒng)籌安排有利于節(jié)約時(shí)間、提高效率,讓大家把更多的時(shí)間和精力投入到抓工作落實(shí)上。會(huì)議的主要目的是:貫徹落實(shí)中央、全省、全市經(jīng)濟(jì)工作會(huì)議精神,動(dòng)員各級(jí)各部門擂起奮進(jìn)催征、起步快跑的戰(zhàn)鼓,奏響團(tuán)結(jié)奮斗、爭(zhēng)創(chuàng)一流的強(qiáng)音,以開局即決戰(zhàn)、起步即沖剌的昂揚(yáng)勢(shì)頭,變快走為快跑,奮勇攻堅(jiān)一季度經(jīng)濟(jì)工作各項(xiàng)重點(diǎn)任務(wù),確保實(shí)現(xiàn)高起步、開門紅,為完成全年經(jīng)濟(jì)社會(huì)發(fā)展目標(biāo)任務(wù)打下堅(jiān)實(shí)基礎(chǔ)。下面,就做好一季度經(jīng)濟(jì)工作,我講幾點(diǎn)意見。
一、導(dǎo)入新課成為一位科學(xué)家是無數(shù)有志青年的夢(mèng)想,對(duì)物理的探究更是許多年輕的學(xué)子孜孜以求的,我們來看一下加來道雄的成長(zhǎng)道路,或許能得到一些啟發(fā)。(板書)一名物理學(xué)家的教育歷程二、明確目標(biāo)1.引導(dǎo)學(xué)生從生活出發(fā),了解科學(xué)、認(rèn)識(shí)科學(xué)2.引導(dǎo)學(xué)生以“教育歷程”為重點(diǎn),探討其中表現(xiàn)的思想內(nèi)涵。三、整體感知1.作者簡(jiǎn)介加來道雄,美籍日裔物理學(xué)家,畢業(yè)于美國哈佛大學(xué),獲加利福尼亞大學(xué)伯克利分校哲學(xué)博士學(xué)位,后任紐約市立大學(xué)城市學(xué)院理論物理學(xué)教授。主要著作有《超越愛因斯坦》(與特雷納合著)《量子場(chǎng)論》《超弦導(dǎo)論》。2.本文的基本結(jié)構(gòu)文章的題目是“一名物理學(xué)家的教育歷程”,因此,敘述的順序主要是歷時(shí)性的。但是,作者開頭就說“童年的兩件趣事極大地豐富了我對(duì)世界的理解力,并且引導(dǎo)我走上成為一個(gè)理論物理學(xué)家的歷程?!倍巴甑膬杉な隆弊鳛槲恼碌闹饕獌?nèi)容,又是共時(shí)性的敘述。這樣的結(jié)構(gòu)安排,使文章既脈絡(luò)清楚,又重點(diǎn)突出。
十、教學(xué)后記:這是我實(shí)習(xí)中上的第一堂課,由于沒有經(jīng)驗(yàn),對(duì)時(shí)間的把握不好,課堂前半部分留給學(xué)生思考回答問題的時(shí)間太多了,以至于沒有完成本課時(shí)的教學(xué)內(nèi)容,對(duì)《箜篌引》、《桃花扇》、《聞官軍收河南河北》內(nèi)容的補(bǔ)充要留到下節(jié)課才能完成。但課堂過程中以討論和結(jié)果發(fā)布會(huì)的形式非常能調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,這節(jié)課學(xué)生的參與度很高,絕大部分的同學(xué)都能積極思考,并敢于回答問題。但是在學(xué)生回答問題后,有些答案很好,也是我沒有思考到的。但是除了簡(jiǎn)單的表揚(yáng)鼓勵(lì)外,我不善于把學(xué)生的思考結(jié)果與自己的板書設(shè)計(jì)結(jié)合起來,授課過程中比較拘泥于教案,顯得不夠靈活??偟膩碚f,這節(jié)課的優(yōu)點(diǎn)是教態(tài)自然、大方,聲音清晰洪亮,能調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,不足在于時(shí)間掌握不好,拘泥于教案。
二.說活動(dòng)目標(biāo)《綱要》指出,發(fā)展幼兒語言的重要途徑是通過互相滲透的各個(gè)領(lǐng)域的教育,在豐富多彩的活動(dòng)中擴(kuò)展幼兒經(jīng)驗(yàn),提供促進(jìn)語言發(fā)展的條件,根據(jù)大班幼兒的內(nèi)容特點(diǎn),我分別從認(rèn)知、能力、情感三方面制定了活動(dòng)目標(biāo)。1.通過多媒體教學(xué),幫助幼兒理解詩歌內(nèi)容,懂得同伴間要友愛,激發(fā)熱愛綠色,保護(hù)向往綠色的情感。2.培養(yǎng)幼兒樂意欣賞不同體裁,不同風(fēng)格的文學(xué)作品的興趣,初步了解敘事詩。3.幼兒在感知作品的基礎(chǔ)上,初步體驗(yàn)詩歌中綠色、灰色所代表的含義。重點(diǎn):幫助幼兒理解詩歌內(nèi)容難點(diǎn):初步體驗(yàn)詩歌中綠色、灰色所代表的含義三.說活動(dòng)準(zhǔn)備為了更好的完成本次活動(dòng)目標(biāo),我準(zhǔn)備了以下材料1.制作與詩歌內(nèi)容相關(guān)的課件2.幼兒人手一面綠旗、灰旗3.詩歌表演的場(chǎng)地布置(森林、鳥窩、小溪、棕櫚葉)4.錄音機(jī)、磁帶、小紅花若干四.說活動(dòng)過程根據(jù)大班幼兒年齡特點(diǎn),我設(shè)計(jì)了以下5個(gè)環(huán)節(jié)1.整體欣賞詩歌《綠色的和灰色的》“今天老師給小朋友帶來了一首詩,你們想聽嗎?現(xiàn)在我們來聽一聽,看一看”(屏幕顯示詩歌內(nèi)容、圖像、配音)2.分段欣賞詩歌,理解詩歌情節(jié),初步體驗(yàn)情感“詩歌里都說了些什么呢?讓我們一起來看一看?!保?)“小朋友你覺得這兒的環(huán)境怎么樣,心里有什么感覺?”(第一段)(2)讓幼兒感受狐貍的狡猾,小鳥的善良。(第二段)(3)讓幼兒體驗(yàn)小兔的機(jī)智、聰明(第三、四段)(4)讓幼兒體驗(yàn)狐貍的失望3.表演詩歌,加深理解,進(jìn)一步體驗(yàn)情感(1)整體欣賞詩歌一遍“現(xiàn)在我們把詩歌再欣賞一次,如果你喜歡,可以輕輕地跟著說(2)讓幼兒分組表演詩歌“請(qǐng)你先和好朋友輕輕商量分配好角色,把小動(dòng)物們說的話表演出來,看誰表演的最好(3)請(qǐng)表現(xiàn)突出的幼兒上臺(tái)表演4.遷移經(jīng)驗(yàn),玩游戲(1)討論:“小兔安全的經(jīng)過了草地,要想謝謝大家給它的幫助,那是誰幫助了它呢?”問“這么多的綠色幫助了小兔,你喜歡綠色嗎?”(2)玩游戲:看畫面,舉小旗5.在歌曲《綠色的家》中結(jié)束活動(dòng)