提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

《我們的民族小學(xué)》說課稿

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對稱。x軸、y軸是雙曲線的對稱軸,原點(diǎn)是對稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點(diǎn)對稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 《誰說女子不如男》教案

    《誰說女子不如男》教案

    教學(xué)過程: 一、導(dǎo)入:師生問好!二、新課教學(xué):1、教師課前要了解各小組的學(xué)習(xí)情況:戲種以及相關(guān)知識等有關(guān)資料的準(zhǔn)備情況。2、播放歌曲《看大戲》提問:上節(jié)課我們了解了什么戲?。拷裉炷膫€(gè)小組的同學(xué)向大家介紹他們學(xué)習(xí)的內(nèi)容? 3、欣賞《花木蘭》選段──誰說女子不如男設(shè)問的問題:▲簡單了解《花木蘭》的劇情?!3焊惺芤魳凤L(fēng)格。 4、欣賞豫劇《誰說女子不如男》設(shè)問的問題:▲揭示曲名:《誰說女子不如男》?!鴺非男捎蓭讉€(gè)部分組成?各部分的速度、情緒怎樣?分別描繪了怎樣的情景?▲這首戲曲的主要伴奏樂器是什么?▲猜一猜:這首樂曲采用哪個(gè)戲種的基本音調(diào)?

  • 大班社會教案:大家說廣告

    大班社會教案:大家說廣告

    2、了解廣告的基本知識及作用。準(zhǔn)備:錄有廣告的錄音幼兒事先收集各種廣告詞實(shí)物:糖果、牙刷、大*班標(biāo)牌過程:1、聽一段常見廣告的錄音,引起幼兒興趣。 提問:剛才聽到什么?我們在哪兒見過?2、師和幼兒共同討論所知道的廣告。(1)、除了剛才的那些廣告,你會說哪些廣告?(請幼兒學(xué)學(xué)電視上的廣告詞)(2)、你們知道廣告有什么作用嗎?為什么要做廣告?(幼兒討論)(3)、師小結(jié):廣告的作用就是宣傳自己,讓大家都知道是做什么用的,都來購買、消費(fèi)。

  • 大班社會教案:說表情

    大班社會教案:說表情

    二、活動(dòng)準(zhǔn)備:  哈哈鏡若干面;古怪果紙偶一只;彩色信三封;音樂。三、活動(dòng)過程:1、以古怪果送禮物,引起幼兒學(xué)習(xí)興趣?! 。?)請幼兒分組照哈哈鏡,感受照哈哈鏡的快樂心情?! 。?)幼兒說出照哈哈鏡的感受。2、古怪果請幼兒玩游戲“照鏡子”?! ∮變寒?dāng)鏡子,老師照鏡子,老師要在鏡子里看到自己的表情,并請幼兒說出有什么表情。3、分組活動(dòng):(幼兒分成三小組) ?。?)出示古怪果寄來三封彩色的信。

  • 國際工程招標(biāo)說明書格式

    國際工程招標(biāo)說明書格式

    一、中華人民共和國從世界銀行申請獲得貸款,用于支付 項(xiàng)目的費(fèi)用。部分貸款將用于支付工程建筑、 等各種合同。所有依世界銀行指導(dǎo)原則具有資格的國家,都可參加招標(biāo)。二、中國 公司(以下簡稱A公司)邀請具有資格的投標(biāo)者提供密封的標(biāo)書,提供完成合同工程所需的勞力、材料、設(shè)備和服務(wù)。三、具有資格的投標(biāo)者可從以下地址獲得更多的信息,或參看招標(biāo)文件:中國A公司(地址)四、第一位具有資格的投標(biāo)者在交納 美元(或人民幣),并提交書面申請后,均可從上述地址獲得招標(biāo)文件。五、每一份標(biāo)書都要附一份投標(biāo)保證書,且應(yīng)不遲于 (時(shí)間)提交給A公司。六、所有標(biāo)書將在 (時(shí)間)當(dāng)著投標(biāo)者代表的面開標(biāo)。七、如果具有資格的國外投標(biāo)者希望與一位中國國內(nèi)的承包人組建合資公司,需在投標(biāo)截止日期前30天提出要求。業(yè)主有權(quán)決定是否同意選定的國內(nèi)承包人。八、標(biāo)前會議將在 (時(shí)間) (地址)召開。投標(biāo)者須知一、工程概述(根據(jù)具體情況寫)二、資金來源

  • 人教版高中語文《師說》教案

    人教版高中語文《師說》教案

    【教學(xué)目標(biāo)】1.了解韓愈關(guān)于尊師重道的論述和本文的思想意義。2.學(xué)習(xí)借鑒本文正反對比的論證方法。3.積累文言知識,掌握實(shí)詞“傳、師、從”,虛詞“以、也、則、于、乎、所以”等詞語的意義和用法,區(qū)別古今異義詞語。4.樹立尊師重教的思想,培養(yǎng)謙虛好學(xué)的風(fēng)氣?!窘虒W(xué)重點(diǎn)和難點(diǎn)】1.了解文章的整體思路。2.學(xué)習(xí)本文正反對比論證的方法?!窘虒W(xué)方法】教師講授;學(xué)生自主探究;多媒體輔助?!菊n時(shí)分配】兩課時(shí)?!窘虒W(xué)過程】第一課時(shí)一、導(dǎo)入并解題初中時(shí)我們學(xué)過一篇課文叫《馬說》,《馬說》實(shí)際上是“說馬”,今天,我們來學(xué)習(xí)一篇“說老師”,說“從師風(fēng)尚”的文章,叫《師說》。“說”是一種文體,偏重于議論,可先敘后議,也可夾敘夾議。

  • 初中化學(xué)人教版九年級上冊《實(shí)驗(yàn)活動(dòng)1氧氣的實(shí)驗(yàn)室制取與性質(zhì)》教案

    初中化學(xué)人教版九年級上冊《實(shí)驗(yàn)活動(dòng)1氧氣的實(shí)驗(yàn)室制取與性質(zhì)》教案

    【學(xué)習(xí)目標(biāo)】1.知識與技能:知道氧氣的制取及檢驗(yàn)方法,復(fù)習(xí)鞏固氧氣的相關(guān)性質(zhì)。2.過程與方法:通過“探究能使帶火星木條復(fù)燃所需氧氣的最低體積分?jǐn)?shù)”的探究性學(xué)習(xí),學(xué)習(xí)科學(xué)探究的基本方法。3.情感態(tài)度與價(jià)值觀:提高實(shí)驗(yàn)設(shè)計(jì)的能力和合作意識,復(fù)習(xí)鞏固相關(guān)的基本操作,培養(yǎng)學(xué)習(xí)化學(xué)的興趣?!緦W(xué)習(xí)重點(diǎn)】氧氣的實(shí)驗(yàn)室制取操作步驟和性質(zhì)檢驗(yàn)?!緦W(xué)習(xí)難點(diǎn)】實(shí)驗(yàn)操作過程中的注意事項(xiàng)。【課前準(zhǔn)備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”。《名師測控》:預(yù)習(xí)贈送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí)引入:實(shí)驗(yàn)室用高錳酸鉀制取氧氣的反應(yīng)原理是什么?操作步驟有哪些?2.明確學(xué)習(xí)目標(biāo),由學(xué)生對學(xué)習(xí)目標(biāo)進(jìn)行解讀。合作探究 生成能力閱讀課本P45~P46的內(nèi)容。提出問題:實(shí)驗(yàn)室加熱高錳酸鉀制取氧氣的實(shí)驗(yàn)中,使用了哪些儀器?哪部分是氣體發(fā)生裝置?哪部分是氣體收集裝置?為什么可用排水法收集氣體?討論交流:結(jié)合化學(xué)實(shí)驗(yàn)基本操作和氧氣的性質(zhì)討論歸納。

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負(fù)號;⑶掌握界限角的三角函數(shù)值.能力目標(biāo):⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負(fù)號;⑶培養(yǎng)學(xué)生的觀察能力.【教學(xué)重點(diǎn)】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學(xué)難點(diǎn)】任意角的三角函數(shù)值符號的確定.【教學(xué)設(shè)計(jì)】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結(jié)合探求三角函數(shù)的定義域;(3)利用定義認(rèn)識各象限角三角函數(shù)的正負(fù)號;(4)數(shù)形結(jié)合認(rèn)識界限角的三角函數(shù)值;(5)問題引領(lǐng),師生互動(dòng).在問題的思考和交流中,提升能力.

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動(dòng)腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時(shí),得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來解決問題. 引領(lǐng) 講解 說明 引領(lǐng) 分析 說明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動(dòng) 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識 點(diǎn) 學(xué)生 自我 發(fā)現(xiàn) 歸納 25

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時(shí),“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識】 當(dāng)兩條直線、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(shí)(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(shí)(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時(shí),兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時(shí),就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.2《直線與直線、直線與平面、平面與平面平行的判定》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.2《直線與直線、直線與平面、平面與平面平行的判定》

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設(shè)情境 興趣導(dǎo)入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個(gè)平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關(guān)系的兩條直線? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 2*動(dòng)腦思考 探索新知 在同一個(gè)平面內(nèi)的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關(guān)系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時(shí)兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實(shí)物圖) 受實(shí)驗(yàn)的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關(guān)系. 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 5

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.3《直線與直線、直線與平面、平面與平面所成的角》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.3《直線與直線、直線與平面、平面與平面所成的角》

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設(shè)情境 興趣導(dǎo)入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點(diǎn)P,過點(diǎn)P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過空間任意一點(diǎn)分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經(jīng)常取一條直線與過另一條直線的平面的交點(diǎn)作為點(diǎn)(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因?yàn)?∥,所以為異面直線與所成的角.即所求角為. (2)因?yàn)椤?,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強(qiáng)調(diào) 引領(lǐng) 講解 說明 觀察 思考 主動(dòng) 求解 通過例題進(jìn)一步領(lǐng)會 17

上一頁123...261262263264265266267268269270271272下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!