提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版初中八年級數(shù)學(xué)上冊從統(tǒng)計(jì)圖估計(jì)數(shù)據(jù)的代表說課稿

  • 北師大初中八年級數(shù)學(xué)下冊分式的基本性質(zhì)教案

    北師大初中八年級數(shù)學(xué)下冊分式的基本性質(zhì)教案

    【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號,分式的值不變;若只改變其中一個(gè)符號或三個(gè)全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問題,對各個(gè)知識點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來完成既定目標(biāo).整個(gè)學(xué)習(xí)過程輕松、愉快、和諧、高效.

  • 北師大初中八年級數(shù)學(xué)下冊分式的有關(guān)概念教案

    北師大初中八年級數(shù)學(xué)下冊分式的有關(guān)概念教案

    解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進(jìn),臺階式的提問使問題解決水到渠成.

  • 北師大初中八年級數(shù)學(xué)下冊分式方程的概念及列分式方程教案

    北師大初中八年級數(shù)學(xué)下冊分式方程的概念及列分式方程教案

    探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式組的解法教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式組的解法教案

    把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.

  • 北師大初中八年級數(shù)學(xué)下冊同分母分式的加減教案

    北師大初中八年級數(shù)學(xué)下冊同分母分式的加減教案

    解析:(1)先把第二個(gè)分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個(gè)分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時(shí),可以把其中一個(gè)分母放到帶有負(fù)號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運(yùn)算.三、板書設(shè)計(jì)1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分?jǐn)?shù)的加減法類比得出同分母分式的加減法.易錯(cuò)點(diǎn)一是符號,二是結(jié)果的化簡.在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對易錯(cuò)點(diǎn)加強(qiáng)練習(xí).從而讓學(xué)生對知識的理解從感性認(rèn)識上升到理性認(rèn)識.

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式的應(yīng)用教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式的應(yīng)用教案

    有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時(shí),購買資金為12×1+10×9=102(萬元);當(dāng)x=2時(shí),購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時(shí),應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計(jì)應(yīng)用一元一次不等式解決實(shí)際問題的步驟:實(shí)際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實(shí)際問題確定答案本節(jié)課通過實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實(shí)際問題的方法來學(xué)習(xí),讓學(xué)生認(rèn)識到列方程與列不等式的區(qū)別與聯(lián)系.

  • 北師大初中八年級數(shù)學(xué)下冊線段的垂直平分線教案

    北師大初中八年級數(shù)學(xué)下冊線段的垂直平分線教案

    ∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.

  • 北師大初中八年級數(shù)學(xué)下冊旋轉(zhuǎn)的定義和性質(zhì)教案

    北師大初中八年級數(shù)學(xué)下冊旋轉(zhuǎn)的定義和性質(zhì)教案

    (3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.

  • 北師大初中八年級數(shù)學(xué)下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學(xué)下冊等腰三角形的判定與反證法教案

    方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.

  • 北師大初中八年級數(shù)學(xué)下冊不等式的基本性質(zhì)教案

    北師大初中八年級數(shù)學(xué)下冊不等式的基本性質(zhì)教案

    【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式的解法教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式的解法教案

    方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).

  • 北師大初中八年級數(shù)學(xué)下冊一元一次不等式組的解法及應(yīng)用教案

    北師大初中八年級數(shù)學(xué)下冊一元一次不等式組的解法及應(yīng)用教案

    安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時(shí),一般只設(shè)一個(gè)未知數(shù),找出兩個(gè)或兩個(gè)以上的不等關(guān)系,相應(yīng)地列出兩個(gè)或兩個(gè)以上的不等式組成不等式組求解.在實(shí)際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個(gè)不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時(shí)要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識解決問題的過程,提高實(shí)際操作能力.

  • 北師大版初中八年級數(shù)學(xué)上冊一次函數(shù)圖象的應(yīng)用說課稿

    北師大版初中八年級數(shù)學(xué)上冊一次函數(shù)圖象的應(yīng)用說課稿

    本環(huán)節(jié)運(yùn)用了一個(gè)階梯式的問答方法,幫助突破本節(jié)課的難點(diǎn)。同時(shí),從具體的實(shí)際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點(diǎn)問題,而且從另外一個(gè)角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動(dòng)探索意識的培養(yǎng)。4、自主評價(jià)本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗(yàn)和體驗(yàn)解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進(jìn)行簡單的填空和選擇,此題屬于A組題型,檢驗(yàn)學(xué)生的掌握情況;然后進(jìn)行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點(diǎn)的靈活運(yùn)用,進(jìn)一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點(diǎn),并掌握求分段函數(shù)解析式的方法。

  • 北師大版初中八年級數(shù)學(xué)上冊一次函數(shù)的圖象說課稿

    北師大版初中八年級數(shù)學(xué)上冊一次函數(shù)的圖象說課稿

    [互動(dòng)2]師:請大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個(gè)函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個(gè)點(diǎn)的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個(gè)點(diǎn)的坐標(biāo),然后把點(diǎn)的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個(gè)或兩個(gè)方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達(dá)式需要幾個(gè)條件?確定一次函數(shù)的表達(dá)式呢?要說明理由。生:確定正比例函數(shù)需要一個(gè)條件,而確定一次函數(shù)需要兩個(gè)條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個(gè)系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個(gè)系數(shù)(待定)R和b。

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過交流互動(dòng),逐步養(yǎng)成合作的意識及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個(gè)根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的性質(zhì)1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的應(yīng)用1教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的應(yīng)用1教案

    因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識解決實(shí)際問題時(shí),要善于發(fā)現(xiàn)實(shí)際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識的綜合經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識.通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.

  • 北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的應(yīng)用2教案

    北師大初中數(shù)學(xué)九年級上冊反比例函數(shù)的應(yīng)用2教案

    補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時(shí)間為12分鐘,大于10分鐘的有效消毒時(shí)間.

上一頁123...67891011121314151617下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。