提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)從統(tǒng)計(jì)圖估計(jì)數(shù)據(jù)的代表說課稿

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 2024年上半年政務(wù)服務(wù)數(shù)據(jù)管理工作總結(jié)

    2024年上半年政務(wù)服務(wù)數(shù)據(jù)管理工作總結(jié)

    (二)緊扣民生訴求,強(qiáng)化管理與服務(wù)創(chuàng)新。聚焦“有訴即應(yīng)、有訴即辦”全面優(yōu)化訴求事件管理與處置機(jī)制,全面升級(jí)數(shù)據(jù)分析與預(yù)警機(jī)制。一是加強(qiáng)部門溝通協(xié)調(diào),及時(shí)破解事件處置堵點(diǎn)難點(diǎn),動(dòng)態(tài)調(diào)整職責(zé)清單,理順部門職責(zé)分工,推動(dòng)民生訴求事件快速、高效辦結(jié)。二是優(yōu)化升級(jí)民生訴求智慧管理平臺(tái)。完善智能標(biāo)簽、智能分撥、事項(xiàng)管理、分析預(yù)警等系統(tǒng)建設(shè)。三是統(tǒng)籌機(jī)構(gòu)與隊(duì)伍建設(shè)。積極推動(dòng)“區(qū)-街道-社區(qū)”三級(jí)民生訴求服務(wù)專職機(jī)構(gòu)建設(shè),保障民生訴求事件分撥、處置、評(píng)價(jià)、考核全流程高效運(yùn)轉(zhuǎn)。(三)緊扣營(yíng)商環(huán)境,深入推動(dòng)政務(wù)服務(wù)創(chuàng)新。堅(jiān)持“政務(wù)服務(wù)只有更好,沒有最好”理念,深入推進(jìn)政務(wù)服務(wù)創(chuàng)新。一是強(qiáng)化縱橫聯(lián)動(dòng)推動(dòng)服務(wù)創(chuàng)新。橫向聯(lián)動(dòng)各審批職能部門,縱向聯(lián)動(dòng)街道、社區(qū)大廳,形成服務(wù)體系與合力,深層次推動(dòng)政務(wù)服務(wù)創(chuàng)新。

  • 人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    問題1. 用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問題2.你能說說這個(gè)問題的特征嗎?上述計(jì)數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類;(2)分別計(jì)算各類號(hào)碼的個(gè)數(shù);(3)各類號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計(jì)數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),如表,

  • 人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(2)教學(xué)設(shè)計(jì)

    當(dāng)A,C顏色相同時(shí),先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時(shí),先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計(jì)數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會(huì)鋼琴和小號(hào)中的一種樂器,其中7人會(huì)鋼琴,3人會(huì)小號(hào),從中選出會(huì)鋼琴與會(huì)小號(hào)的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會(huì)鋼琴又會(huì)小號(hào)(把該人記為甲),只會(huì)鋼琴的有6人,只會(huì)小號(hào)的有2人.把從中選出會(huì)鋼琴與會(huì)小號(hào)各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會(huì)鋼琴的只能從6個(gè)只會(huì)鋼琴的人中選出,有6種不同的選法,會(huì)小號(hào)的也只能從只會(huì)小號(hào)的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.

  • 統(tǒng)編版三年級(jí)語(yǔ)文上第14課小狗學(xué)叫

    統(tǒng)編版三年級(jí)語(yǔ)文上第14課小狗學(xué)叫

    《小狗學(xué)叫》這篇童話通過擬人的手法,敘述的是一只小狗學(xué)叫的故事。構(gòu)思新穎,想象豐富,作者的情思寄寓在形象的描寫中,耐人尋味。故事讀起來看似有點(diǎn)荒誕無稽,但細(xì)品之后誰(shuí)也不會(huì)去懷疑和談?wù)摴适碌恼鎸?shí)性,而是深刻地思考品評(píng)故事所暗示的“小狗終于做成真正的狗,找回迷失的自我”的主題。作者曾經(jīng)說過:“在每一件事物中都有一個(gè)故事,這些故事在桌子的木頭中,在玻璃中,在玫瑰中……” 《小狗學(xué)叫》正是以現(xiàn)實(shí)生活為基礎(chǔ),在每一件事中挖掘故事,把現(xiàn)實(shí)世界的偶然現(xiàn)象和必然因素統(tǒng)一起來,把故事情節(jié)的曲折變化和人物性格的邏輯發(fā)展結(jié)合起來,通過這一高超的藝術(shù)辯證法,幽默地展示出現(xiàn)實(shí)社會(huì)中的某些現(xiàn)象,使人們?cè)谛β曋惺艿浇逃蛦l(fā)。我們可用多媒體課件等形象的教學(xué)手段,拉近學(xué)生與文本之間的距離。 1.會(huì)認(rèn)“討、厭”等11個(gè)生字,讀準(zhǔn)“嗎、擔(dān)”等5個(gè)多音字。2.能預(yù)測(cè)故事的結(jié)局,并將自己的預(yù)測(cè)與原文進(jìn)行比較,體會(huì)預(yù)測(cè)的多樣性,培養(yǎng)學(xué)生聽故事的技巧和預(yù)測(cè)故事結(jié)局的能力。3.通過分角色朗讀,在觀察、想象、表演中,讓學(xué)生感受閱讀的樂趣。4.引導(dǎo)學(xué)生正確認(rèn)識(shí)自我,發(fā)現(xiàn)自己的潛力,能夠做好自己。 1.教學(xué)重點(diǎn):培養(yǎng)學(xué)生聽故事的技巧和預(yù)測(cè)故事結(jié)局的能力,能根據(jù)故事發(fā)展尋找推測(cè)故事結(jié)局的依據(jù)。2.教學(xué)難點(diǎn):培養(yǎng)學(xué)生認(rèn)真思考、仔細(xì)推敲的探究習(xí)慣。 1課時(shí)

  • 人教A版高中數(shù)學(xué)必修一奇偶性教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一奇偶性教學(xué)設(shè)計(jì)(2)

    《奇偶性》內(nèi)容選自人教版A版第一冊(cè)第三章第三節(jié)第二課時(shí);函數(shù)奇偶性是研究函數(shù)的一個(gè)重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對(duì)函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會(huì)判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語(yǔ)言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用奇偶性解決實(shí)際問題。重點(diǎn):函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點(diǎn):函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。

  • 人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(1)

    一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對(duì)稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對(duì)稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對(duì)稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請(qǐng)同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對(duì)稱的三個(gè)點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對(duì)稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對(duì)稱點(diǎn)P3(-x, y)

  • 人教A版高中數(shù)學(xué)必修一基本不等式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一基本不等式教學(xué)設(shè)計(jì)(2)

    《基本不等式》在人教A版高中數(shù)學(xué)第一冊(cè)第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對(duì)于本節(jié)課的知識(shí)點(diǎn)有了很好的鋪墊作用。同時(shí)本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會(huì)用基本不等式解決簡(jiǎn)單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過程.

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時(shí),本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運(yùn)動(dòng)變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實(shí)際問題,如時(shí)針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會(huì)判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會(huì)判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對(duì)角的定義是:射線OA繞端點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)一周回到起始位置,在這個(gè)過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動(dòng)輪和被動(dòng)輪的旋轉(zhuǎn)方向不一致.

  • 人教A版高中數(shù)學(xué)必修二簡(jiǎn)單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二簡(jiǎn)單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    知識(shí)探究(一):普查與抽查像人口普查這樣,對(duì)每一個(gè)調(diào)查調(diào)查對(duì)象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個(gè)調(diào)查中,我們把調(diào)查對(duì)象的全體稱為總體,組成總體的每一個(gè)調(diào)查對(duì)象稱為個(gè)體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對(duì)象的某些指標(biāo)的全體作為總體,每一個(gè)調(diào)查對(duì)象的相應(yīng)指標(biāo)作為個(gè)體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時(shí)掌握全國(guó)人口變動(dòng)狀況,我國(guó)每年還會(huì)進(jìn)行一次人口變動(dòng)情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動(dòng)情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,并以此為依據(jù)對(duì)總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個(gè)體稱為樣本,樣本中包含的個(gè)體數(shù)稱為樣本量。

  • 人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(2)

    本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對(duì)稱變換,充分體現(xiàn)對(duì)稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會(huì) 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號(hào)看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡(jiǎn)和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡(jiǎn)單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3全概率公式教學(xué)設(shè)計(jì)

    2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?

  • 人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3條件概率教學(xué)設(shè)計(jì)

    (2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過;若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過,求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計(jì)

    3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.

  • 初一數(shù)學(xué)老師國(guó)旗下講話發(fā)言稿

    初一數(shù)學(xué)老師國(guó)旗下講話發(fā)言稿

    成功者是需要堅(jiān)韌的毅力和非凡的勇氣的。一個(gè)人經(jīng)歷一些挫折并不是壞事情?!白怨判鄄哦嗄ルy,從來紈绔少偉男。”在我們成長(zhǎng)的道路上,有坦途,也有坎坷;有鮮花,也有荊棘。在你伸手摘取美麗的鮮花時(shí),荊棘同時(shí)會(huì)刺傷你的手。如果因?yàn)榕峦?,就不愿伸手,那么?duì)于這種人來說,再美麗的鮮花也是可望而不可及的。成功永遠(yuǎn)屬于挑戰(zhàn)失敗的人。我們擁有年輕,年輕沒有失敗。只要能戰(zhàn)勝荊棘,戰(zhàn)勝自己,即便是弄行得遍體鱗傷,至少也可以證明我們?cè)?jīng)奮斗過,我們不是挫折的奴隸!

  • 人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一函數(shù)y=Asin(ωχ+φ)教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法;通過對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。

上一頁(yè)123...354355356357358359360361362363364365下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!