2.在操作活動中,努力學(xué)會獨立完成制作正方體的任務(wù)?! ?3.體驗參與數(shù)學(xué)活動的快樂。 活動準(zhǔn)備: 教具:正方體 正方形學(xué)具:《幼兒用書》各種長方體及正方體的物品 活動過程: 一、初步認(rèn)識正方體 師:老師這有一個大魔方,請你看一看它是什么形狀的? 幼:正方形(正方體)教師把正方形和正方體進(jìn)行比較?! ?(1)師:請你看一看這個魔方的面是什么形狀的?(正方形),所有的面都是正方形嗎?
活動準(zhǔn)備: 魔術(shù)師的衣服、帽子各一件,三種圖形卡片各一張,頭飾各一個,不同表情的三種圖形卡通掛飾每人一個,三種圖形的彩色卡片若干(粘在“圖形媽媽”身上),三種圖形的標(biāo)志牌各一個,戶外布置好“小商場”,三種不同形狀的實物若干?! 』顒舆^程:(一)以變魔術(shù)的游戲形式導(dǎo)入,激發(fā)幼兒興趣。 1、老師打扮成魔術(shù)師的樣子對孩子們說:“我是神奇的魔術(shù)師,我能變出很多很多的東西,看我變變變”。(邊說邊轉(zhuǎn)一圈,從袖子里拿出三角形)。 提問:(1)我變出了什么? (2)三角形有幾條邊?(伸出手點數(shù)) (3)你見過什么東西是三角形形狀的? 2、用同樣方法,從左兜里變出正方形,提問相似問題?! ?3、用同樣方法,從右兜里變出圓形,提問相似問題?! 。ǘ┻M(jìn)行游戲:圖形娃娃找家 1、以魔術(shù)師的身份變出圖形娃娃,送給孩子們。 師:我的本領(lǐng)可大了,還能把你們變成圖形娃娃,看我變變變(從隱蔽的地方拿出卡通圖形娃娃掛飾,讓幼兒辨認(rèn)形狀),你喜歡哪一個,就自取一個掛在脖子上,自己摸一摸,看一看你是什么形狀的娃娃?
為了構(gòu)建積極有效的師幼互動,讓幼兒在自主狀態(tài)下主動建構(gòu)知識和經(jīng)驗,體現(xiàn)真正有價值、有意義的學(xué)習(xí),以此提高教育的有效性。我有意識運用了以下三種教育方法:一“順”,二“引”,三“助”。 “順”即順應(yīng)幼兒的活動,為他們提供有關(guān)主題的資料及活動所需的材料,使幼兒按照自己的意愿進(jìn)行探索。在這個過程中,教師給足幼兒自由的時間與空間,提供豐富的材料?! 耙奔从们擅畹姆椒ㄒ龑?dǎo)幼兒生成和建構(gòu)新的主題或知識。在這個過程中教師通過觀察思考和設(shè)置開放性問題的策略,以玩伴的身份參與到幼兒的活動中,與幼兒有效地互動。讓幼兒在“玩”中學(xué),在學(xué)中“玩”。 “助”即教師在適當(dāng)?shù)臅r候“助”幼兒一臂之力,對幼兒進(jìn)行點拔,借助當(dāng)時的情景、材料,直接地提出主題,把幼兒的學(xué)習(xí)興趣推向深入。
在幼兒進(jìn)行實驗的時候,大部分孩子都能夠認(rèn)真的去尋找反作用力,只有極個別孩子只對某一樣?xùn)|西感興趣,所以就不太主動的去進(jìn)行其他的探索實驗,根據(jù)這個情況,我對這樣的孩子也進(jìn)行了正確的引導(dǎo),在實驗結(jié)束的時候,大部分孩子都能夠在不同的物體中找到反作用力?! ∥疑系倪@節(jié)課是科學(xué)活動《火箭升空》這是整合課程《交通工具博覽會》主題中的一個活動?! ∠旅嫖蚁日f一下這節(jié)課的活動目標(biāo): 1、拓展幼兒的想像力及對科學(xué)的探索能力?! ?、嘗試了解火箭升空的動力。 3、初步了解反作用力。 首先,我說一下這節(jié)課的設(shè)計意圖,在《交通工具博覽會》主題活動中,我們班的孩子對于火箭都非常好奇,感興趣,平時提到火箭孩子們也都很興奮,他們雖然知道火箭,喜歡火箭,但是火箭對于他們來說具體是一個什么樣的概念,他們還不是很了解。
二、說活動目標(biāo): 根據(jù)中班幼兒的年齡特點,和建構(gòu)知識的能力我為本次活動制定了如下三條目標(biāo):1、運用各種感官感知泡泡的特性,了解不同形狀的工具吹出的泡泡都是圓的。2、嘗試運用記錄的方式表達(dá)、交流探索的過程和結(jié)果,發(fā)展學(xué)習(xí)的自主性。3、在探究活動過程中,體驗發(fā)現(xiàn)的樂趣。三、說活動重點、難點: 此次活動設(shè)計的最終目的是激發(fā)幼兒更深層的探究“泡泡特性以及不同形狀的工具吹出的泡泡都是圓的”欲望。因此我將本次活動的重點確定為“運用各種感官感知泡泡的特性,了解不同形狀的工具吹出的泡泡都是圓的”。將“嘗試運用記錄的方式表達(dá)、交流探索的過程和結(jié)果,發(fā)展學(xué)習(xí)的自主性”確定為本次活動的難點。
我上的這節(jié)課是科學(xué)活動《火箭升空》這是整合課程《交通工具博覽會》主題中的一個活動?! ∠旅嫖蚁日f一下這節(jié)課的活動目標(biāo):1、拓展幼兒的想像力及對科學(xué)的探索能力。2、嘗試了解火箭升空的動力。3、初步了解反作用力?! ∈紫龋艺f一下這節(jié)課的設(shè)計意圖,在《交通工具博覽會》主題活動中,我們班的孩子對于火箭都非常好奇,感興趣,平時提到火箭孩子們也都很興奮,他們雖然知道火箭,喜歡火箭,但是火箭對于他們來說具體是一個什么樣的概念,他們還不是很了解?! ∵@也正是《綱要》中所提出的:從生活或媒體以及幼兒熟悉的科技成果入手,引導(dǎo)幼兒感受科學(xué)技術(shù)對生活的影響,培養(yǎng)他們對科學(xué)的興趣,和對科學(xué)家的崇敬,所以我就抓住了孩子們的這個興趣點,來設(shè)計了《火箭升空》這節(jié)課。
雷鋒精神是什么?這一環(huán)節(jié)是讓學(xué)生用簡單的詞語或句子概括。通過這一活動,讓學(xué)生概括出雷鋒精神的內(nèi)涵:像無私奉獻(xiàn)、樂于助人、為人民服務(wù)、勤儉節(jié)約、尊老愛幼、勤奮好學(xué)、干一行愛一行、言行一致等等都是雷鋒精神的體現(xiàn)。我們少年兒童是中國的未來和希望,雷鋒精神的發(fā)揚和光大,創(chuàng)建文明校園的任務(wù)就落在他們的肩上,所以在這里我還設(shè)計了為發(fā)揚雷鋒精神,創(chuàng)建文明校園“我該怎么做”這樣的問題,目的就是讓他們一起行動起來,學(xué)雷鋒做好事,并制作了“榮譽”旗,獎勵身邊的好人好事?;顒友由欤哼@里我設(shè)計了一個角色游戲活動——我要義賣獻(xiàn)愛心,這個游戲?qū)W生們表現(xiàn)得非常積極,他們收集了自己不要的小文具或小玩具,將他們拿到集市上去賣,賣東西獲得的錢,捐給王奶奶的孫女,因為王奶奶的孫女生病了,無錢治病。我覺得這個游戲使學(xué)生們懂得,一個人只要有愛心,只要愿意去幫助別人,無論什么方式都行,而且在游戲活動中孩子們體會到了幫助別人是一件多么多么快樂的事呀。
一、教材分析第四單元“發(fā)展社會主義市場經(jīng)濟”旨在培養(yǎng)社會主義的建設(shè)者,高中生是未來社會主義現(xiàn)代化建設(shè)的主力軍,是將來參與市場經(jīng)濟活動的主要角色,承擔(dān)著全面建設(shè)小康社會的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國人民的生活水平達(dá)到總體小康這一偉大成就,然后從微觀和宏觀兩個方面介紹總體小康的成就。同時指出,我國現(xiàn)在達(dá)到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟建設(shè)的新要求”。這一目專門介紹全面建設(shè)小康社會的經(jīng)濟目標(biāo),也是學(xué)生要重點把握的內(nèi)容。二、教學(xué)目標(biāo)(一)知識目標(biāo)(1)識記總體小康的建設(shè)成就在宏觀和微觀上的表現(xiàn),全面建設(shè)小康社會的經(jīng)濟建設(shè)目標(biāo)。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會建設(shè)進(jìn)程是不平衡的發(fā)展過程。(3)運用所學(xué)知識,初步分析全面建設(shè)小康社會的意義。
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時,所需進(jìn)化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當(dāng)每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進(jìn)價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示