提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教A版高中數(shù)學必修一函數(shù)的應用(一)教學設計(2)

  • 人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    (4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1)  教學設計

    人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1) 教學設計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教A版高中數(shù)學必修一充分條件與必要條件教學設計(1)

    人教A版高中數(shù)學必修一充分條件與必要條件教學設計(1)

    本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質(zhì).

  • 人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(2)

    人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(2)

    本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.數(shù)學學科素養(yǎng)1.數(shù)學抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點近似值的步驟;3.數(shù)學運算:求函數(shù)零點近似值;4.數(shù)學建模:通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用.

  • 人教A版高中數(shù)學必修二簡單隨機抽樣教學設計

    人教A版高中數(shù)學必修二簡單隨機抽樣教學設計

    知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。

  • 人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    人教A版高中數(shù)學必修一用二分法求方程的近似解教學設計(1)

    《數(shù)學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據(jù)具體的函數(shù)圖象能夠借助計算機或信息技術(shù)工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數(shù)與方程之間的聯(lián)系;它既是本冊書中的重點內(nèi)容,又是對函數(shù)知識的拓展,既體現(xiàn)了函數(shù)在解方程中的重要應用,同時又為高中數(shù)學中函數(shù)與方程思想、數(shù)形結(jié)合思想、二分法的算法思想打下了基礎(chǔ),因此決定了它的重要地位.發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數(shù)在給定區(qū)間內(nèi)的零點,從而求得方程的近似解. a.數(shù)學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.

  • 人教A版高中數(shù)學必修一單調(diào)性與最大(?。┲到虒W設計(2)

    人教A版高中數(shù)學必修一單調(diào)性與最大(小)值教學設計(2)

    《函數(shù)的單調(diào)性與最大(?。┲怠肥歉咧袛?shù)學新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學生已學習了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學習起著鋪墊作用。學生在初中已經(jīng)學習了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學生對增減性有一個初步的感性認識,所以本節(jié)課是學生數(shù)學思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,對解決各種數(shù)學問題有著廣泛作用。課程目標1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學學科素養(yǎng)

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    本節(jié)內(nèi)容是復數(shù)的三角表示,是復數(shù)與三角函數(shù)的結(jié)合,是對復數(shù)的拓展延伸,這樣更有利于我們對復數(shù)的研究。1.數(shù)學抽象:利用復數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復數(shù)的三角形式;4.直觀想象:利用復數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復數(shù)三角形式計算復數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導過程—得出結(jié)論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復數(shù)的三角形式、復數(shù)三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數(shù)呢?如何表示?

  • 人教A版高中數(shù)學必修二總體集中趨勢的估計教學設計

    人教A版高中數(shù)學必修二總體集中趨勢的估計教學設計

    (2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。

  • 人教A版高中數(shù)學必修二總體離散程度的估計教學設計

    人教A版高中數(shù)學必修二總體離散程度的估計教學設計

    問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

  • 人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設計

    人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設計

    可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。

  • 人教A版高中數(shù)學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    人教A版高中數(shù)學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺的結(jié)構(gòu)特征來解釋這種關(guān)系嗎?3.練習一圓柱的一個底面積是S,側(cè)面展開圖是一個正方體,那么這個圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.

  • 人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設計

    人教A版高中數(shù)學必修二古典概型和概率的基本性質(zhì)教學設計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

  • 人教A版高中數(shù)學必修二空間點、直線、平面之間的位置關(guān)系教學設計

    人教A版高中數(shù)學必修二空間點、直線、平面之間的位置關(guān)系教學設計

    9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經(jīng)過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內(nèi)不經(jīng)過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).

  • 人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    問題導入:問題一:試驗1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。

  • 人教A版高中數(shù)學必修二向量的減法運算教學設計

    人教A版高中數(shù)學必修二向量的減法運算教學設計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質(zhì)上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!