教師總結(jié):近二十多年來(lái),我國(guó)個(gè)人所得稅的征收發(fā)展迅速,這也反映了我國(guó)經(jīng)濟(jì)水平、人民生活收入有了較大提高。與增值稅的計(jì)稅方法不同,個(gè)人所得稅采用累進(jìn)稅率的計(jì)稅辦法,就是個(gè)人所得越高,稅率越高,納稅人個(gè)人收入越多,繳納個(gè)人所得稅越多。這一特點(diǎn)從教材83頁(yè)個(gè)人所得稅稅率表上可以看出。教師點(diǎn)撥:個(gè)人所得稅的計(jì)算辦法是分段計(jì)算的,個(gè)人收入800元以內(nèi)不計(jì)稅,多余800元以上部分,按不同稅率分段計(jì)稅。請(qǐng)同學(xué)們計(jì)算教材所列題目。學(xué)生活動(dòng):計(jì)算。應(yīng)稅所得額:4000元;不超過(guò)500元部分:25元;500――2000元部分:150元;2000――4000元部分:300元;累計(jì)所得稅:475元教師活動(dòng):同學(xué)們想一想,這樣計(jì)算個(gè)人所得稅有什么意義呢?學(xué)生活動(dòng):認(rèn)真思考,回答問題教師點(diǎn)撥:有利于增加財(cái)政收入,有利于調(diào)節(jié)個(gè)人收入分配,實(shí)現(xiàn)社會(huì)公平。(三)課堂總結(jié)、點(diǎn)評(píng)
三峽庫(kù)區(qū)農(nóng)村移民安置根本出路是通過(guò)發(fā)展大農(nóng)業(yè)來(lái)解決耕地不足,不應(yīng)盲目開墾荒坡地,防止產(chǎn)生新的水土流失,盡量避免生態(tài)環(huán)境惡化。2、就地后靠,就近安置模式三峽庫(kù)區(qū)淹沒區(qū)線狀分布的受淹特點(diǎn)有別于一般水庫(kù)淹沒區(qū)的片狀分布,使得庫(kù)區(qū)移民具有相對(duì)分散的特點(diǎn),且淹沒涉及的356個(gè)鄉(xiāng)鎮(zhèn)沒有一個(gè)被全淹,甚至全淹的村也很少,這有利于移民在本縣甚至本鄉(xiāng)就近后靠安置,避免了水庫(kù)移民大量外遷、遠(yuǎn)遷所造成的種種困難和后遺癥。三峽移民搬遷大多可以就地后靠,就近安置,這是三峽移民的一大特色。就近后靠安置的優(yōu)點(diǎn)是不離本鄉(xiāng)本土,移民容易接受,且避免了移民大量外遷、遠(yuǎn)遷所造成的困難和后遺癥;缺點(diǎn)是容易對(duì)當(dāng)?shù)氐纳鷳B(tài)環(huán)境造成過(guò)大的壓力,如過(guò)度開墾坡地、破壞植被、加劇水土流失等。3、工程周期長(zhǎng),可從容安置移民三峽工程建設(shè)周期長(zhǎng)(1994年~2009年,共17年),使得移民安置能夠及早進(jìn)行,可以從容安置移民的生產(chǎn)和生活。
在學(xué)生明確了稅收的含義之后,我將分別對(duì)稅收的三個(gè)基本特征進(jìn)行解析。在講解了之后,并分別用實(shí)例對(duì)其進(jìn)行說(shuō)明,加深學(xué)生對(duì)知識(shí)點(diǎn)的印象。最重要的是,總結(jié)出關(guān)鍵的字眼,使得學(xué)生能夠清晰的區(qū)分出稅收的三個(gè)基本特征。將強(qiáng)制性概括為依法征稅、依法納稅;無(wú)償性概括為不具有償還性和返還型;固定性概括為規(guī)定應(yīng)不應(yīng)納稅、納什么稅、納多少稅。并跟學(xué)生指出,強(qiáng)制性是基本前提,無(wú)償性是核心。由此根據(jù)書上的內(nèi)容,推導(dǎo)出稅收的三個(gè)基本特征相互之間的關(guān)系,即:三者缺一不可,統(tǒng)一于稅法。而且,無(wú)償性要求強(qiáng)制性,強(qiáng)制性保障無(wú)償性;而無(wú)償性與強(qiáng)制性又共同決定固定性。從而結(jié)束新課講授。3、課堂總結(jié)根據(jù)板書內(nèi)容重新回顧本課學(xué)習(xí)的主要內(nèi)容,包括稅收的含義,以及稅收的三個(gè)基本特征和它們之間的相互關(guān)系。4、作業(yè)布置讓學(xué)生預(yù)習(xí)稅收的種類的內(nèi)容,尤其是增值稅和個(gè)人所得稅。同時(shí)了解父母每月所繳納的個(gè)人所得稅和怎么計(jì)算的。
(三)課堂小結(jié)接著進(jìn)行課堂小結(jié),先讓學(xué)生自主總結(jié),教師結(jié)合學(xué)生的總結(jié),補(bǔ)充完善總結(jié)本節(jié)課的知識(shí)。并進(jìn)行感情升華。這樣設(shè)計(jì)課堂小結(jié),是為了讓學(xué)生學(xué)會(huì)自主總結(jié)知識(shí),加深印象,教師總結(jié)幫助學(xué)生理清本課知識(shí)結(jié)構(gòu),并起到升華本節(jié)課的感情基調(diào),落實(shí)教學(xué)目標(biāo)。(四)課堂練習(xí)我將設(shè)計(jì)兩道題讓同學(xué)們做,鞏固課堂知識(shí)。本課題板書設(shè)計(jì)我主要采用大綱的形式展現(xiàn),讓學(xué)生一目了然,便于識(shí)記和理解主干知識(shí)。五、教學(xué)預(yù)測(cè)最后我對(duì)本節(jié)課教學(xué)的效果進(jìn)行預(yù)測(cè):在這個(gè)教學(xué)過(guò)程中我都是從學(xué)生生活中感知的現(xiàn)象入手,設(shè)計(jì)情境,預(yù)設(shè)學(xué)生的分析,學(xué)生的體驗(yàn),學(xué)生的感知,教師的點(diǎn)撥等。設(shè)計(jì)問題,學(xué)生自主合作探究,完成教學(xué)!通過(guò)這樣的學(xué)習(xí)我想一定會(huì)收到較好的教學(xué)效果,當(dāng)然,在實(shí)際的教學(xué)中,肯定也會(huì)出現(xiàn)一些意想不到的情況,我還會(huì)根據(jù)教學(xué)過(guò)程中的動(dòng)態(tài)變化,及時(shí)地調(diào)整和修改預(yù)設(shè)內(nèi)容。
(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
一.教材分析(一)教材內(nèi)容地位作用與學(xué)情《分?jǐn)?shù)的簡(jiǎn)單計(jì)算》是人教版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)P96~97第八單元中的分?jǐn)?shù)的簡(jiǎn)單計(jì)算第一課時(shí)的內(nèi)容。主要是簡(jiǎn)單同分母分?jǐn)?shù)的加減法的計(jì)算,分?jǐn)?shù)的簡(jiǎn)單計(jì)算是學(xué)生數(shù)與代數(shù)運(yùn)算的一次擴(kuò)展,是在學(xué)生之前學(xué)習(xí)認(rèn)知了簡(jiǎn)單分?jǐn)?shù)含義及其大小比較等知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上開展教學(xué)的。也是學(xué)習(xí)異分母加減法等知識(shí)的基礎(chǔ)。(二)教學(xué)目標(biāo)基于以上教材理解分析和新課程標(biāo)準(zhǔn)“四基”、“四能”要求,擬將本課教學(xué)目標(biāo)定位確立如下:知識(shí)與技能目標(biāo): 理解和掌握同分母分?jǐn)?shù)加減法的算理和計(jì)算方法,能正確計(jì)算簡(jiǎn)單同分母分?jǐn)?shù)的加減法,解決簡(jiǎn)單實(shí)際問題;過(guò)程與方法目標(biāo):讓學(xué)生經(jīng)歷探究同分母加減法的計(jì)算方法的過(guò)程。培養(yǎng)學(xué)生的動(dòng)手操作能力、邏輯思維能力、口頭表達(dá)能力和計(jì)算能力。情感態(tài)度與價(jià)值觀目標(biāo):讓學(xué)生感受到數(shù)學(xué)來(lái)與生活的密切聯(lián)系,培養(yǎng)增強(qiáng)數(shù)學(xué)興趣。
(二)導(dǎo)學(xué)釋疑在這一環(huán)節(jié)中,我首先用課件出示例題“智慧老人準(zhǔn)備給客廳鋪上地板,算一算智慧老人客廳面積有多大?”,創(chuàng)設(shè)了智慧老人家鋪地板遇到困難請(qǐng)同學(xué)們幫忙的情境,引導(dǎo)學(xué)生通過(guò)以下三方面展開獨(dú)學(xué)、對(duì)學(xué)、群學(xué),以達(dá)成學(xué)習(xí)目標(biāo):1.我們不妨先來(lái)估算一下客廳的面積大約是多少?(設(shè)計(jì)估一估的教學(xué)活動(dòng),并不是蜻蜓點(diǎn)水,而是在學(xué)生思考之后,有意識(shí)的引導(dǎo),從而培養(yǎng)學(xué)生的估算意識(shí),同時(shí)也是對(duì)后面精算的解決方法的一個(gè)鋪墊和啟示。)2.獨(dú)立思考,小組交流,展示匯報(bào)學(xué)習(xí)情況(這是本節(jié)課的重要環(huán)節(jié),在學(xué)生解決組合圖形面積時(shí),重視把學(xué)生的思維過(guò)程充分暴露出來(lái),首先,學(xué)生通過(guò)自己獨(dú)立思考,得出解決問題的方法;然后通過(guò)小組和全班交流,使學(xué)生學(xué)會(huì)了別人的方法;最后,從這些方法中,比較、反思、知道最簡(jiǎn)便的方法。)3.看教科書88頁(yè)內(nèi)容。(一方面可以讓學(xué)生對(duì)照教科書檢查自己的探究過(guò)程,另一方面可以讓學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行內(nèi)化整理)
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).
冪函數(shù)是在繼一次函數(shù)、反比例函數(shù)、二次函數(shù)之后,又學(xué)習(xí)了單調(diào)性、最值、奇偶性的基礎(chǔ)上,借助實(shí)例,總結(jié)出冪函數(shù)的概念,再借助圖像研究?jī)绾瘮?shù)的性質(zhì).課程目標(biāo)1、理解冪函數(shù)的概念,會(huì)畫冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結(jié)合這幾個(gè)冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì);3、通過(guò)觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語(yǔ)言表示函數(shù)冪函數(shù);2.邏輯推理:常見冪函數(shù)的性質(zhì);3.數(shù)學(xué)運(yùn)算:利用冪函數(shù)的概念求參數(shù);4.數(shù)據(jù)分析:比較冪函數(shù)大?。?.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用冪函數(shù)性質(zhì)、圖像特點(diǎn)解決實(shí)際問題。重點(diǎn):常見冪函數(shù)的概念、圖象和性質(zhì);難點(diǎn):冪函數(shù)的單調(diào)性及比較兩個(gè)冪值的大小.
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對(duì)數(shù)的運(yùn)算》。其核心是弄清楚對(duì)數(shù)的定義,掌握對(duì)數(shù)的運(yùn)算性質(zhì),理解它的關(guān)鍵就是通過(guò)實(shí)例使學(xué)生認(rèn)識(shí)對(duì)數(shù)式與指數(shù)式的關(guān)系,分析得出對(duì)數(shù)的概念及對(duì)數(shù)式與指數(shù)式的 互化,通過(guò)實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對(duì)數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點(diǎn)的關(guān)鍵是抓住對(duì)數(shù)的概念、并讓學(xué)生掌握對(duì)數(shù)式與指數(shù)式的互化;通過(guò)實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),讓學(xué)生準(zhǔn)確地運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,學(xué)會(huì)運(yùn)用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)的概念,能進(jìn)行指數(shù)式與對(duì)數(shù)式的互化;2、了解常用對(duì)數(shù)與自然對(duì)數(shù)的意義,理解對(duì)數(shù)恒等式并能運(yùn)用于有關(guān)對(duì)數(shù)計(jì)算。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識(shí)作儲(chǔ)備,教科書通過(guò)利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值。課程目標(biāo)1、通過(guò)具體實(shí)例引入,推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì);2、熟練掌握對(duì)數(shù)的運(yùn)算性質(zhì),學(xué)會(huì)化簡(jiǎn),計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過(guò)的數(shù)學(xué)建模過(guò)程解決問題.重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,對(duì)數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對(duì)數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
對(duì)數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納對(duì)數(shù)的概念,通過(guò)對(duì)數(shù)的性質(zhì)和恒等式解決一些與對(duì)數(shù)有關(guān)的問題.課程目標(biāo)1、理解對(duì)數(shù)的概念以及對(duì)數(shù)的基本性質(zhì);2、掌握對(duì)數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)的概念;2.邏輯推理:推導(dǎo)對(duì)數(shù)性質(zhì);3.數(shù)學(xué)運(yùn)算:用對(duì)數(shù)的基本性質(zhì)與對(duì)數(shù)恒等式求值;4.數(shù)學(xué)建模:通過(guò)與指數(shù)式的比較,引出對(duì)數(shù)定義與性質(zhì).重點(diǎn):對(duì)數(shù)式與指數(shù)式的互化以及對(duì)數(shù)性質(zhì);難點(diǎn):推導(dǎo)對(duì)數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國(guó)的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達(dá)到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過(guò)教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過(guò)從實(shí)際問題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.
2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過(guò);若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過(guò),求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過(guò)”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.