第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎.教學效果:學生舉手發(fā)言,提問個別學生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉(zhuǎn)化為純數(shù)學問題;(2)應用有關函數(shù)的性質(zhì)作答.
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關鍵.
解:設個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應舍去.當x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學習的意識.體會數(shù)學與實際生活的聯(lián)系,進一步感知方程的應用價值.
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設計列一元二次方程解應用題的一般步驟可以歸結(jié)為“審,設,列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關系;(2)設:設未知數(shù),有直接和間接兩種設法,因題而異;(3)列:列方程,一般先找出能夠表達應用題全部含義的一個相等關系,列代數(shù)式表示相等關系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效數(shù)學模型.通過學生創(chuàng)設解決問題的方案,增強學生的數(shù)學應用意識和能力.
探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數(shù)增多時,將是一個非常驚人的數(shù)字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結(jié):從實際問題入手讓學生體會科學記數(shù)法的實際應用.題中沒有直接給出數(shù)據(jù),應先計算,再表示.探究點二:將用科學記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結(jié):將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).三、板書設計借助身邊熟悉的事物進一步體會大數(shù),積累數(shù)學活動經(jīng)驗,發(fā)展數(shù)感、空間感,培養(yǎng)學生自主學習的能力.
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調(diào)查.你能根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數(shù)直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調(diào)查,這40天賣出這種報紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分數(shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
方法總結(jié):描述一個代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據(jù)實際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習冊花了n元,得出買1本練習冊花n2元,再根據(jù)買了m本練習冊,即可列出算式.(2)根據(jù)正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識點包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關鍵.
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點來表示相應的數(shù),再利用它們對應點的位置來判斷各數(shù)的大?。猓喝鐖D:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個數(shù)的大小比較,可利用“數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進行比較.探究點四:點在數(shù)軸上的移動問題點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到點B時,點B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數(shù)軸上表示-2的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為2.故選C.方法總結(jié):點A在數(shù)軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應的權(quán),避免出錯.三、板書設計平均數(shù)算術平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學生的思維能力;通過有關平均數(shù)問題的解決,提升學生的數(shù)學應用能力.通過解決實際問題,體會數(shù)學與社會生活的密切聯(lián)系,了解數(shù)學的價值,增進學生對數(shù)學的理解和增加學好數(shù)學的信心.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設計函數(shù)定義:自變量、因變量、常量函數(shù)的關系式三種表示方法函數(shù)值函數(shù)的圖象在教學過程中,注意通過對以前學過的“變量之間的關系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學生的學習興趣,并通過層層深入的問題設計,引導學生進行觀察、操作、交流、歸納等數(shù)學活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學生對函數(shù)概念的理解.
. 一個數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯誤的是()A.任何數(shù)的絕對值一定是非負數(shù); B.一個負數(shù)的絕對值一定是正數(shù);C.一個正數(shù)的絕對值一定是正數(shù); D.一個數(shù)不是正數(shù)就是負數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個有理數(shù)的和是正數(shù),積是負數(shù),則這兩個有理數(shù)( )A.都是正數(shù); B.都是負數(shù); C.一正一負,且正數(shù)的絕對值較大; D.一正一負,且負數(shù)的絕對值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當n為正整數(shù)時, 的值是()
一、 背景與意義分析統(tǒng)計主要研究現(xiàn)實生活中的數(shù)據(jù),它通過收集、整理、描述和分析數(shù)據(jù)來幫助人們對事物的發(fā)展作出合理的判斷,能夠利用數(shù)據(jù)信息和對數(shù)據(jù)進行處理已成為信息時代每一位公民必備的素質(zhì)。通過對本章全面調(diào)查和抽樣調(diào)查的學習,學生可基本掌握收集和整理數(shù)據(jù)的方法。二、 學習與導學目標1 知識積累與疏導:通過復習小結(jié),進一步領悟到現(xiàn)實生活中通過數(shù)據(jù)處理,對未知的事情作出合理的推斷的事實。2 技能掌握與指導:通過復習,進一步明確數(shù)據(jù)處理的一般過程。3 智能提高與訓導:在與他人交流合作的過程中學會設計調(diào)查問卷。4 情感修煉與提高:積極創(chuàng)設情境,參與調(diào)查、整理數(shù)據(jù),體會社會調(diào)查的艱辛與樂趣。5 觀念確認與引導:體會從實踐中來到實踐中去的辨證思想。三、 障礙與生成關注調(diào)查問卷的設計及根據(jù)調(diào)查總結(jié)的報告給出合理的預測。四、 學程與導程活動活動一 回顧本章內(nèi)容,繪制知識結(jié)構(gòu)圖
一.學習目的和要求:1.對本章內(nèi)容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎知識的歸納、總結(jié);基礎知識的運用;整式的加減運算的靈活運用。難點:本章基礎知識的歸納、總結(jié);基礎知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結(jié) 交流、練習 探究 相結(jié)合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關,與字母的排列順序無關。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉(zhuǎn)過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經(jīng)過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?
16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是( ).A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?( )A.3個 B.4個 C.5個 D.6個三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數(shù)學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數(shù)學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關系,并會進行簡單的換算.一、情境導入鐘表是我們生活中常見的物品,同學們,你能說出圖中每個鐘表時針與分針所成的角度嗎?學完了下面的內(nèi)容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關,角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形,說法正確.所以只有④正確.故選A.