2、培養(yǎng)幼兒的口語表達(dá)能力。 活動準(zhǔn)備:1、掛圖,故事磁帶?! ?.壓路機(jī)、大卡車、小汽車圖片?!? 活動過程:一、欣賞圖片,說說不同?!?、出示壓路機(jī)、大卡車、小汽車的圖片。你們知道這三輛車的名字嗎?2、這三種車誰跑得最快?誰跑得最慢? 二、完整欣賞故事。1、出示掛圖,引導(dǎo)幼兒傾聽故事一遍?!?、壓路機(jī)在馬路上擋住了誰的路?它們是怎么說的?3、大卡車、小汽車遇到了什么麻煩?
活動目標(biāo):1、在撕撕玩玩的過程中,感受皺紙的特性。2、在游戲中,體會快樂的情緒?;顒訙?zhǔn)備:1、大張的皺紙1張、彩色的皺紙若干、托盤和水瓶子人手1份2、歡快的音樂CD1張3、干毛巾若干 活動過程:一、以音樂游戲《許多小魚》的方式引出課題。幼兒扮小魚,跟著教師邊玩音樂游戲《許多小魚》邊進(jìn)入活動室。師:小魚兒們,前面有個大魚網(wǎng),跟著媽媽要小心不要被網(wǎng)住了哦! 二、認(rèn)識皺紙,大家一起來撕一撕、揉一揉。1、師 ;剛才我們游戲中的魚網(wǎng)是用什么做的?(皺紙)2、教師舞動用皺紙做的彩帶,幼兒想象。師:孩子們看,我這里還有許多五顏六色的皺紙。瞧,像什么?(幼兒自由想象并大膽回答)3、幼兒嘗試著撕皺紙。A、師: 誰知道這細(xì)細(xì)長長的皺紙是怎么來的?(用小手撕出來的)B、請個別幼兒上來試試。C、教師提示:按照皺紙紋路撕出長條。4、幼兒操作
活動目標(biāo): 1、引導(dǎo)幼兒在圓形上聯(lián)想出多種物體,并通過添畫表現(xiàn)其主要特征,激發(fā)想象力?! ?、能主動參與創(chuàng)編活動,用連貫的語言大膽地表達(dá)自己的想法,發(fā)展語言,豐富聯(lián)想。 3、在活動中充分體驗(yàn)創(chuàng)作的快樂,培養(yǎng)幼兒間的合作精神?! 』顒訙?zhǔn)備: 1、實(shí)物:一個圓圈的圖片人手一張?! ?、實(shí)物投影儀 活動過程: 一、引導(dǎo)幼兒對圓圈進(jìn)行初步想象?! 煟航裉炖蠋煄砹耸裁??(一個圈圈) 這個圈圈看上去像什么?(小船、小床、碗……) 那西瓜皮口朝下看上去又像什么?(小傘、屋頂、臺燈……)
2、幼兒能用線條的形狀變化和疏密排列來表現(xiàn)各種各樣的鳥。 3、激發(fā)幼兒熱愛大自然的情感。 三:活動重點(diǎn):認(rèn)識鳥的共同特征,擴(kuò)大有關(guān)鳥的生活經(jīng)驗(yàn)。 活動難點(diǎn):幼兒能用線條的形狀變化和疏密排列來表現(xiàn)各種各樣的鳥。 四、活動準(zhǔn)備:1、收集有關(guān)鳥的圖片資料。 2、8K紙人手一張,記號筆人手一支。 五、活動過程: (一)收集有關(guān)鳥的資料,認(rèn)識鳥的共同特征,擴(kuò)大有關(guān)鳥的生活經(jīng)驗(yàn)。 1、游戲:非常1+1 “小朋友,今天有很多小鳥朋友來看我們,你們看看他們都是誰?” “它們今天要和我們大(三)班的小朋友作個游戲,游戲名字叫非常1+1。我們小朋友先提出有關(guān)鳥的問題,老師幫你們記錄下來,然后進(jìn)行智力搶答,答對的小朋友得一顆星,最后看誰的星星多,誰就是我們班的鳥博士?!薄澳銈冊敢鈪⒓訂幔俊?/p>
準(zhǔn)備小容器、蠟燭、顏料等若干份,圖書《小水滴旅行》(人民教育出版社出版“螢火蟲”畫叢)。過程活動(一)凍冰花1.帶領(lǐng)幼兒在院子里或幼兒園附近尋找結(jié)冰的地方。師生一起在一塊平坦的土地上潑一些水,建造一個小小滑冰場。讓幼兒在自己建的小冰場上滑冰、拉冰車,充分地感知冰的特性(涼、滑、硬、脆),享受冰上游戲的快樂。中循環(huán)
活動準(zhǔn)備: 1、帶幼兒連續(xù)觀察風(fēng)中人物、事物的一些變化。2、教具:若干有頭發(fā)、穿著衣服的娃娃;國旗;柳樹等。3、油畫棒、畫紙、毛筆、水粉活動目標(biāo):1、能表現(xiàn)出風(fēng)中人物和簡單景物的動態(tài)的一致性。2、能用多種形式表現(xiàn)出風(fēng)起時的天氣狀況(發(fā)黃、有塵埃)活動過程:一、與幼兒到操場進(jìn)行戶外游戲,并引導(dǎo)幼兒發(fā)現(xiàn)自己的頭發(fā)、衣服以及周邊事物的變化。二、回到教室,進(jìn)行談話活動1、我們在做游戲時你有什么感覺?2、你都看見風(fēng)中什么發(fā)生了哪些變化?(土地、樹、衣服等)三、幼兒分組擺弄教具,感受風(fēng)中不同事物的變化。1、請各組的小朋友用手里的這些事物擺出風(fēng)中場景2、引導(dǎo)幼兒發(fā)現(xiàn)風(fēng)中事物的一致性。
“我們的人民熱愛生活,期盼有更好的教育、更穩(wěn)定的工作、更滿意的收入、更可靠的社會保障、更高水平的醫(yī)療衛(wèi)生服務(wù)、更舒適的居住條件、更優(yōu)美的環(huán)境,期盼著孩子們能成長得更好、工作得更好、生活得更好。人民對美好生活的向往,就是我們的奮斗目標(biāo)?!彼?、中國夢這是一個綻放夢想的時代,每個人都是夢想家。中國夢從我的夢開始。同學(xué)們,在每一個階段盡情放飛你的夢想,讓他帶領(lǐng)你前行,照亮你的人生。堅持夢想的過程,是一個不斷超越自我、實(shí)現(xiàn)自我的過程。抬頭看著你的夢想,腳踏實(shí)地的努力每天都離夢想更近一步。中國夢,承載著中國民主、富強(qiáng)、公正、和諧、自由的最基本價值觀、承載著自強(qiáng)不息的中國精神。中國夢需要我們每一個人付出自己的努力,共筑夢想,讓夢想照耀中國,善良世界。
環(huán)節(jié)四 課堂總結(jié) 鞏固知識本節(jié)課我采用線索性的板書,整個知識結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書設(shè)計來進(jìn)行小結(jié),以此來幫助教師在第一時間掌握學(xué)生學(xué)習(xí)信息的反饋,同時培養(yǎng)學(xué)生歸納分析能力、概括能力。環(huán)節(jié)五 情景回歸,情感升華我的實(shí)習(xí)指導(dǎo)老師告訴過我們,政治這一門學(xué)科要從生活中來到生活去,所以在課堂的最后布置課外作業(yè),以此培養(yǎng)學(xué)生對理論的實(shí)際運(yùn)用能力,同時檢驗(yàn)他們對知識的真正掌握情況,以此達(dá)到情感的升華,本節(jié)課,我根據(jù)建構(gòu)主義理論,強(qiáng)調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識意義的主動建構(gòu)者,是信息加工的主體,要強(qiáng)調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識,更讓他們相信知識,并且將知識融入到實(shí)踐當(dāng)中去,最終達(dá)到知、情、意、行的統(tǒng)一。
一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實(shí)際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點(diǎn)一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點(diǎn)。可是說不等式的基本性質(zhì)這個概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點(diǎn)。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)和生活實(shí)際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會“從實(shí)際問題中抽象出數(shù)學(xué)模型,并回到實(shí)際問題中解釋和檢驗(yàn)”的過程。注重“概念的實(shí)際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實(shí)際問題中,在已有的學(xué)習(xí)經(jīng)驗(yàn)的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗(yàn)證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學(xué)的價值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運(yùn)用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點(diǎn)。
(4)提出問題:三種運(yùn)輸方式有哪些異同 組織學(xué)生分析填表,反饋和糾正.提出問題:影響自由擴(kuò)散,協(xié)助擴(kuò)散和主動運(yùn)輸速度的主要因素各是什么 畫出細(xì)胞對某物的自由擴(kuò)散,協(xié)助擴(kuò)散和主動運(yùn)輸速度隨細(xì)胞外濃度的改變而變化的曲線圖組織學(xué)生分組討論,并作圖,展示各組的成果.教學(xué)說明:本環(huán)節(jié)鞏固理論知識是對課本知識擴(kuò)展和對重點(diǎn),難點(diǎn)內(nèi)容的深入理解和總結(jié),只有理解了三種運(yùn)輸方式的異同,才能完成本環(huán)節(jié)教學(xué)任務(wù),既突顯書本知識,又培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的精神,提高學(xué)生制做圖表的能力和抽象化思維能力的形成.2.大分子的運(yùn)輸引導(dǎo)學(xué)生回憶分泌蛋白的分泌過程,得出胞吐現(xiàn)象,提出問題:那大家知道白細(xì)胞是如何吃掉病菌的嗎 顯示有關(guān)圖片.強(qiáng)調(diào):胞吞和胞吐作用都需要能量提出問題:胞吞和胞吐體現(xiàn)了細(xì)胞膜結(jié)構(gòu)的特點(diǎn)是什么 與書本前面知識相聯(lián)系.(四)技能訓(xùn)練指導(dǎo)學(xué)生就《技能訓(xùn)練》部分進(jìn)行討論五,反饋練習(xí)1.教師小結(jié)幾種運(yùn)輸方式,特別是自由擴(kuò)散,協(xié)助擴(kuò)散和主動運(yùn)輸?shù)奶攸c(diǎn)
設(shè)疑自探:一個壓縮或拉伸的彈簧就是一個“儲能器”,怎樣衡量形變彈簧蘊(yùn)含能量的多少呢?彈簧的彈性勢能的表達(dá)式可能與那幾個物理量有關(guān)?類比:物體的重力勢能與物體所受的重力和高度有關(guān)。那么彈簧的彈性勢能可能與所受彈力的大小和在彈力方向上的位置變化有關(guān),而由F=kl知彈簧所受彈力等于彈簧的勁度系數(shù)與形變量的乘積。預(yù)測:彈簧的彈性勢能與彈簧的勁度系數(shù)和形變量有關(guān)。學(xué)生討論如何設(shè)計實(shí)驗(yàn): ①、用同一根彈簧在幾次被壓縮量不同時釋放(勁度系數(shù)相同,改變形變量),觀察小車被彈開的情況。②、分別用兩根彈簧在被壓縮量相同時釋放(形變量相同,勁度系數(shù)不同),觀察小車被彈開的情況。交流探究結(jié)果:彈性勢能隨彈簧形變量增大而增大。隨彈簧的勁度系數(shù)的增大而增大。
“做功的過程就是能量轉(zhuǎn)化過程”,這是本章教學(xué)中的一條主線。對于一種勢能,就一定對應(yīng)于相應(yīng)的力做功。類比研究重力勢能是從分析重力做功入手的,研究彈簧的彈性勢能則應(yīng)從彈簧的彈力做功入手。然而彈簧的彈力是一個變力,如何研究變力做功是本節(jié)的一個難點(diǎn),也是重點(diǎn)。首先,要引導(dǎo)學(xué)生通過類比重力做功和重力勢能的關(guān)系得出彈簧的彈力做功和彈簧的彈性勢能的關(guān)系。其次,通過合理的猜想與假設(shè)得出彈簧的彈力做功與哪些物理量有關(guān)。最后,類比勻變速直線運(yùn)動求位移的方法,進(jìn)行知識遷移,利用微元法的思想得到彈簧彈力做功的表達(dá)式,逐步把微分和積分的思想滲透到學(xué)生的思維中。本節(jié)課通過游戲引入課題,通過生活中拉弓射箭、撐桿跳高和彈跳蛙等玩具以及各種彈簧等實(shí)例來創(chuàng)設(shè)情景,提出問題。給學(xué)生感性認(rèn)識,引起學(xué)生的好奇心;讓學(xué)生對彈簧彈力做功的影響因素進(jìn)行猜想和假設(shè),提出合理的推測,激發(fā)學(xué)生的探索心理,構(gòu)思實(shí)驗(yàn),為定性探究打下基礎(chǔ)。然后,引導(dǎo)學(xué)生通過類比重力做功與重力勢能的關(guān)系得出彈簧彈性勢能與彈簧彈力做功的關(guān)系。
4.已知△ABC三個頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時,A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點(diǎn)C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點(diǎn)分別是第k個正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時,無限趨近于所有正方形的面積和
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:①過原點(diǎn)時,直線方程為y=-34x.②直線不過原點(diǎn)時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.