一個數(shù)各個位上的數(shù)字之和如果是3的倍數(shù),那么,這個數(shù)一定是3的倍數(shù)。否則,這個數(shù)就不是3的倍數(shù)。4、檢驗(yàn)結(jié)論。(1)我們從100以內(nèi)的數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?(2)利用100以內(nèi)數(shù)表來驗(yàn)證。(3)延伸到三位數(shù)或更大的數(shù)。如:573、753、999、1236、2244、7863……(4)學(xué)生自己寫數(shù)并驗(yàn)證,然后小組交流,觀察得出的結(jié)論是否相同。在本環(huán)節(jié),我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學(xué)生的回答我給予充分的肯定和表揚(yáng),引導(dǎo)學(xué)生驗(yàn)證自己的發(fā)現(xiàn)是否正確,最后達(dá)成共識:一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點(diǎn),突破了本課的難點(diǎn)。
一、說教材1、教學(xué)內(nèi)容北師大版小學(xué)數(shù)學(xué)五年級上冊第五單元的第一課時《分?jǐn)?shù)的再認(rèn)識(一)》。2、教材分析本課是學(xué)生在三年級初步認(rèn)識分?jǐn)?shù)的基礎(chǔ)上,進(jìn)行深入和拓展的。在三年級,學(xué)生已結(jié)合情境和直觀操作,體驗(yàn)了分?jǐn)?shù)產(chǎn)生的過程,認(rèn)識了整體“1”,初步了解了分?jǐn)?shù)的意義,能認(rèn)、讀、寫一些簡單的分?jǐn)?shù)。本節(jié)課是在此基礎(chǔ)上,進(jìn)一步引導(dǎo)學(xué)生認(rèn)識和理解分?jǐn)?shù),為后面進(jìn)一步學(xué)習(xí)、運(yùn)用分?jǐn)?shù)知識做好鋪墊。本課的課題是《分?jǐn)?shù)的再認(rèn)識》,這個“再認(rèn)識”,我想應(yīng)該有兩方面的含義,一是進(jìn)一步認(rèn)識、理解分?jǐn)?shù)的意義,二是結(jié)合具體的情境,讓學(xué)生體會“整體”與“部分”的關(guān)系,體會“整體不同,同一個分?jǐn)?shù)所對應(yīng)的數(shù)量也不同”,從而體驗(yàn)數(shù)學(xué)知識形成的全過程。3、教學(xué)目標(biāo)根據(jù)教學(xué)內(nèi)容和學(xué)生的認(rèn)知能力,我將本節(jié)課的教學(xué)目標(biāo)制定如下:
(四)引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)(2)培養(yǎng)學(xué)生觀察--探索--抽象--概括的能力。2.教學(xué)安排(1)提出問題:通過驗(yàn)證這兩組分?jǐn)?shù)確實(shí)相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學(xué)生的觀察結(jié)果是什么,教師要順應(yīng)學(xué)生的思維,針對學(xué)生的觀察方法,進(jìn)行引導(dǎo)性評價①觀察角度的獨(dú)特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導(dǎo)層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導(dǎo)學(xué)生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導(dǎo)層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導(dǎo)層次三:用自己的話把你觀察到的規(guī)律概括出來。
1、走進(jìn)課堂、匯報總結(jié)因?yàn)槭穷A(yù)習(xí)后的課,所以我直接問“昨天老師布置了預(yù)習(xí)作業(yè),你都學(xué)會了什么”從孩子們掌握的知識切入,進(jìn)行新授。讓學(xué)生總結(jié)出2、5的倍數(shù)的特征,奇數(shù)與偶數(shù)的概念,以及既是2的倍數(shù),又是5的倍數(shù)的特征。二、嘗試練習(xí)檢驗(yàn)學(xué)生預(yù)習(xí)效果,這是數(shù)學(xué)預(yù)習(xí)不可缺少的過程。數(shù)學(xué)學(xué)科有別于其他學(xué)科的一大特點(diǎn)就是要用數(shù)學(xué)知識解決問題。學(xué)生經(jīng)過自己的努力初步理解和掌握了新的數(shù)學(xué)知識,要讓學(xué)生通過做練習(xí)或解決簡單的問題來檢驗(yàn)自己預(yù)習(xí)的效果。既能讓學(xué)生反思預(yù)習(xí)過程中的漏洞,又能讓老師發(fā)現(xiàn)學(xué)生學(xué)習(xí)新知識時較集中的問題,以便課堂教學(xué)時抓住重、難點(diǎn)。因?yàn)槭穷A(yù)習(xí)之后的課,所以練習(xí)題的難度比較高,安排了不同難度的練習(xí)題來鞏固新知識。三、設(shè)置下節(jié)課預(yù)習(xí)任務(wù)設(shè)置下節(jié)課的預(yù)習(xí)任務(wù),是進(jìn)行下節(jié)課內(nèi)容的鋪墊,讓孩子們按著一定的方案有計(jì)劃、有目標(biāo)地對下節(jié)課進(jìn)行預(yù)習(xí),以便下節(jié)課的教學(xué)活動。
知識與技能:學(xué)生通過對雞兔同籠現(xiàn)象的觀察與思考,從中發(fā)現(xiàn)一些特殊的規(guī)律,掌握解決問題的一般策略——列表;過程與方法:通過列表枚舉的方法,積累解決問題的經(jīng)驗(yàn),經(jīng)歷列表、嘗試和不斷調(diào)整的過程;情感態(tài)度與價值觀:在現(xiàn)實(shí)情境中,使學(xué)生感受到數(shù)學(xué)思想的運(yùn)用與解決實(shí)際問題的聯(lián)系,體會到數(shù)學(xué)的價值;重點(diǎn):探索列表枚舉的不同方法,找到解決問題的有效策略;難點(diǎn):在自主探索過程中,掌握利用數(shù)據(jù)比較、判斷、調(diào)整的方法;關(guān)鍵:發(fā)現(xiàn)規(guī)律,確定猜測的范圍。三、學(xué)生學(xué)情分析:學(xué)生在三年級時已經(jīng)初步嘗試了應(yīng)用逐一列表法解決問題,還有個別學(xué)生會套用公式解決雞兔同籠問題,但對問題本質(zhì)理解不透。學(xué)生的思維較活躍,有一定的合作學(xué)習(xí)經(jīng)驗(yàn)。本節(jié)課向?qū)W生提供了富有挑戰(zhàn)性的學(xué)習(xí)素材,大大激發(fā)了學(xué)生探究的欲望。
活動3,估老虎頭和楓葉的面積。圖1是進(jìn)一步鞏固轉(zhuǎn)化的方法;圖二是靈活變式。學(xué)生體驗(yàn)到在實(shí)際生活中不只可以將不規(guī)則圖形轉(zhuǎn)化成一個基本圖形,也可轉(zhuǎn)化成幾個基本圖形再求面積。學(xué)生的思想層次得到提升?;顒?,估計(jì)三個圓的面積。旨在體會面積單位越小,估計(jì)的面積越接近精確值。為學(xué)生今后會學(xué)習(xí)到的“密鋪”知識打下基礎(chǔ)?;顒?,小組合作估手掌的面積。這個活動是對這節(jié)課所學(xué)知識的綜合運(yùn)用。如何估最簡便?從畫手掌輪廓到選擇合適的方法估計(jì),綜合訓(xùn)練學(xué)生解決數(shù)學(xué)問題的能力。五個活動層層遞進(jìn)、層層深入,學(xué)生逐步體會到用轉(zhuǎn)化成基本圖形的方法估計(jì)不規(guī)則圖形的面積的優(yōu)越性,并能選擇合適的轉(zhuǎn)化方法解決實(shí)際問題,從而突破教學(xué)重難點(diǎn)。
二、學(xué)生分析本節(jié)課是一節(jié)計(jì)算教學(xué)課,是在學(xué)生學(xué)習(xí)了整數(shù)除法及其意義的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,掌握算法和探究算理是計(jì)算教學(xué)的兩大任務(wù),針對本班的學(xué)生對于整數(shù)除法計(jì)算知識掌握比較好,基礎(chǔ)知識扎實(shí),學(xué)生善于獨(dú)立思考、發(fā)現(xiàn)問題,同時也具備一定的自學(xué)能力。但需要在教師適當(dāng)?shù)囊龑?dǎo)和啟發(fā)下,來順利完成本節(jié)課的學(xué)習(xí)任務(wù)。三、教學(xué)方法基于對課標(biāo)的理解教材學(xué)生的分析我采用了以下的教學(xué)方法,通過情境的創(chuàng)設(shè),首先引導(dǎo)學(xué)生正確獲取信息、分析信息,提出相應(yīng)的數(shù)學(xué)問題,并在討論解決問題策略的基礎(chǔ)上,鼓勵學(xué)生從已有的知識經(jīng)驗(yàn)入手,努力探索新知識;充分發(fā)揮小組合作學(xué)習(xí)的優(yōu)勢,給學(xué)生提供充分從事數(shù)學(xué)活動的機(jī)會,計(jì)算方法多樣化。再在總結(jié)比較的基礎(chǔ)上,引導(dǎo)學(xué)生重點(diǎn)掌握除數(shù)是整數(shù)的小數(shù)除法的豎式計(jì)算方法,最后將學(xué)生所學(xué)的新知識進(jìn)一步與生活實(shí)際聯(lián)系起來,鞏固深化。
2、利用已有知識,引導(dǎo)學(xué)生自主探索求積、商近似值的方法。在學(xué)生想出6.7美元折成人民幣時要用乘法計(jì)算時,引導(dǎo)學(xué)生獨(dú)立計(jì)算得出結(jié)果后發(fā)現(xiàn)問題并嘗試獨(dú)立解決。使學(xué)生認(rèn)識到積的近似值可以用四舍五入的方法求近似值。接著出示第二個情境“媽媽用600元人民幣到銀行可兌換多少美元?”由學(xué)生獨(dú)立完成,在學(xué)生交流的基礎(chǔ)上進(jìn)一步總結(jié)求積、商的近似值的方法:積取近似值是先精確計(jì)算,在根據(jù)題目的要求取近似值;商取近似值是直接根據(jù)要求多除一位,然后取近似值。3、鞏固練習(xí)在學(xué)生初步掌握求積、商的近似值的方法后,我安排了教材67頁的試一試,讓學(xué)生體會如何按要求取近似值;教材68頁的練一練,涉及到了多個國家的貨幣與人民幣的兌換使學(xué)生進(jìn)一步感受到數(shù)學(xué)與日常生活的密切聯(lián)系
六、說學(xué)法本節(jié)課的學(xué)法主要是自主探究法、合作交流法。教法和學(xué)法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學(xué)中要注意發(fā)揮學(xué)生的主體地位,充分調(diào)動學(xué)生的各種感官參與學(xué)習(xí),誘發(fā)其內(nèi)在的潛力,獨(dú)立主動的探索,使他們不僅學(xué)會,而且會學(xué)。學(xué)生通過小組合作的方式,自主探究設(shè)計(jì)出秋游方案,然后每個小組間進(jìn)行交流,最后推選出最合理可行的方案。學(xué)生通過解決生活中的實(shí)際問題,從中發(fā)現(xiàn)與數(shù)學(xué)之間的聯(lián)系。并通過同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實(shí)踐中體驗(yàn),最后在討論中明理,從而得出了最佳的方案。七、說教學(xué)過程為了能很好地化解重點(diǎn)、突破難點(diǎn)達(dá)到預(yù)期的教學(xué)目標(biāo),我設(shè)計(jì)了三個教學(xué)環(huán)節(jié),下面,我就從這三個環(huán)節(jié)一一進(jìn)行闡述。(一)創(chuàng)設(shè)情境、激發(fā)興趣
(三)探究新知,建立模型這一環(huán)節(jié)是課堂教學(xué)的主體部分,是學(xué)習(xí)知識、培養(yǎng)能力的主要途徑。先是讓學(xué)生獨(dú)立思考,討論交流,在具體的生活情境中讓整個學(xué)習(xí)過程充滿生活氣息,使學(xué)生學(xué)會借助生活經(jīng)驗(yàn)思考探索問題,培養(yǎng)他們運(yùn)用數(shù)學(xué)知識解決日常生活中的實(shí)際問題的能力,獲得分析問題和解決問題的一些基本方法,培養(yǎng)應(yīng)用意識。(四)歸納總結(jié),發(fā)現(xiàn)規(guī)律通過總結(jié),使學(xué)生盲目無序的思考變得有序,使生活化的思維方式得以數(shù)學(xué)化,使寬泛膚淺的認(rèn)識得以提煉和升華。(五)鞏固練習(xí),拓展延伸通過學(xué)習(xí),了解學(xué)生本節(jié)課的掌握情況。體現(xiàn)了數(shù)學(xué)的真正價值,數(shù)學(xué)來源于生活,又應(yīng)用于生活。(六)課堂小結(jié),課后延伸使學(xué)生在重溫學(xué)習(xí)的過程中獲得積極的情感體驗(yàn),使知識的脈絡(luò)更清晰。
(二)導(dǎo)學(xué)釋疑在這一環(huán)節(jié)中,我首先用課件出示例題“智慧老人準(zhǔn)備給客廳鋪上地板,算一算智慧老人客廳面積有多大?”,創(chuàng)設(shè)了智慧老人家鋪地板遇到困難請同學(xué)們幫忙的情境,引導(dǎo)學(xué)生通過以下三方面展開獨(dú)學(xué)、對學(xué)、群學(xué),以達(dá)成學(xué)習(xí)目標(biāo):1.我們不妨先來估算一下客廳的面積大約是多少?(設(shè)計(jì)估一估的教學(xué)活動,并不是蜻蜓點(diǎn)水,而是在學(xué)生思考之后,有意識的引導(dǎo),從而培養(yǎng)學(xué)生的估算意識,同時也是對后面精算的解決方法的一個鋪墊和啟示。)2.獨(dú)立思考,小組交流,展示匯報學(xué)習(xí)情況(這是本節(jié)課的重要環(huán)節(jié),在學(xué)生解決組合圖形面積時,重視把學(xué)生的思維過程充分暴露出來,首先,學(xué)生通過自己獨(dú)立思考,得出解決問題的方法;然后通過小組和全班交流,使學(xué)生學(xué)會了別人的方法;最后,從這些方法中,比較、反思、知道最簡便的方法。)3.看教科書88頁內(nèi)容。(一方面可以讓學(xué)生對照教科書檢查自己的探究過程,另一方面可以讓學(xué)生對所學(xué)知識進(jìn)行內(nèi)化整理)
(1)、創(chuàng)設(shè)情境,提出數(shù)學(xué)問題。出示主題圖,中秋節(jié)到了,淘氣和笑笑通過打電話的方式來表達(dá)對遠(yuǎn)方親人的思念,從這幅圖中你能得到哪些數(shù)學(xué)信息,能提出什么數(shù)學(xué)問題。學(xué)生很容易就找到數(shù)學(xué)信息“笑笑打國內(nèi)長途,每分鐘0.3元,共花5.1元;淘氣打國際長途,每分鐘7.2元,共花54元。”根據(jù)這些信息你能提出哪些數(shù)學(xué)問題呢?學(xué)生可能會說“笑笑打電話的時間是多少分?淘氣打電話的時間是多少分?”還有的同學(xué)會提出“笑笑和淘氣誰打電話的時間長?”等等,你能估一估淘氣和笑笑誰打電話的時間長嗎?(2)估算誰打電話時間長?通過估算,培養(yǎng)學(xué)生的估算意識,提高估算能力,豐富學(xué)生的素養(yǎng),發(fā)展數(shù)感。在這里我分為三步:首先讓學(xué)生說說是怎樣估算的;其次指名學(xué)生說說估算的過程;最后評價和鼓勵估算方法的合理性。
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學(xué)回家后,問爸爸媽媽小牛隊(duì)與太陽隊(duì)籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊(duì)的納什比小牛隊(duì)的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊(duì)贏;否則太陽隊(duì)贏.”請你幫小明分析一下.究竟是哪個隊(duì)贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費(fèi),學(xué)生都按七折收費(fèi);乙旅行社的優(yōu)惠條件是家長、學(xué)生都按八折收費(fèi).假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅游,他們應(yīng)該選擇哪家旅行社?
加減混合是在連加連減的基礎(chǔ)上進(jìn)行的,學(xué)生有了一定的基礎(chǔ),在計(jì)算方法上沒有什么大的問題,那么我就重要引導(dǎo)學(xué)生理解加減混合運(yùn)算的意義。本課是從學(xué)生熟悉的乘坐公共汽車的生活情境引入的。教學(xué)時,我讓學(xué)生用數(shù)學(xué)語言描述情境圖中的“動作過程”,提出問題,并聯(lián)系過程列式計(jì)算。學(xué)生都有乘公交車的經(jīng)歷,所以理解起來非常容易。這類加減混合式題是在連加、連減的基礎(chǔ)上進(jìn)行教學(xué)的,由于運(yùn)算順序與連加、連減的順序相同,所以教學(xué)時讓學(xué)生進(jìn)行類推,先填好分步計(jì)算的第一個豎式,并計(jì)算出得數(shù),再填寫第二步計(jì)算的豎式,并計(jì)算出結(jié)果,然后讓學(xué)生自己想簡便寫法的豎式。把學(xué)生的主動探索和老師的適時引導(dǎo)有機(jī)結(jié)合,使學(xué)生再輕松愉快的氛圍中提高學(xué)習(xí)能力。
解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實(shí)數(shù),但在解決實(shí)際問題的過程中,自變量的取值范圍要根據(jù)實(shí)際情況來確定.解題過程中應(yīng)該注意對題意的正確理解.三、板書設(shè)計(jì)反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識到理性認(rèn)識的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活實(shí)際,并為生活實(shí)際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個別輔導(dǎo),學(xué)生完畢教師給予評估肯定。II鞏固練習(xí):限時完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時,該式?jīng)]意義);③當(dāng) 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應(yīng) 的任意一對對應(yīng)值的積來求得,只要k確定了,這個函數(shù)就確定了。
請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實(shí)例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習(xí):1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計(jì)黃金分割定義:一般地,點(diǎn)C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點(diǎn) C黃金分割黃金分割點(diǎn):一條線段有兩個黃金分割點(diǎn)黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點(diǎn)的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實(shí)際操作、思考、交流等過程中增強(qiáng)學(xué)生的實(shí)踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.
2.如何找一條線段的黃金分割點(diǎn),以及會畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗(yàn)來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計(jì)
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點(diǎn)是對△BED是等腰三角形認(rèn)識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計(jì)矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.