(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據:勝的場數+負的場數=總場數 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16
導語在必修第一冊中,我們研究了函數的單調性,并利用函數單調性等知識,定性的研究了一次函數、指數函數、對數函數增長速度的差異,知道“對數增長” 是越來越慢的,“指數爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內的平均速度v ?近似的描述它的運動狀態(tài)。
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據查,2016--2017年度世界年度小麥產量約為7.5億噸,根據以上數據,判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數可以構成一個數列,請判斷分析這個數列是否是等比數列?并寫出這個等比數列的通項公式.是等比數列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數學問題.
情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數列. 那么什么叫數列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數據(單位:厘米)依次排成一列數:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數,h_2=87是排在第2位的數〖"…" ,h〗_17 =168是排在第17位的數,它們之間不能交換位置,所以①具有確定順序的一列數。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
新知探究我們知道,等差數列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數” 。類比等差數列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產生的后代個數依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數學家,近代數學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數列:1,2,3,…,n,"… " 前100項的和問題.等差數列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數列{an} 是等差數列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數的奇偶進行分類討論.當n為偶數時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數數時, n-1為偶數
求函數的導數的策略(1)先區(qū)分函數的運算特點,即函數的和、差、積、商,再根據導數的運算法則求導數;(2)對于三個以上函數的積、商的導數,依次轉化為“兩個”函數的積、商的導數計算.跟蹤訓練1 求下列函數的導數:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數的導數(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數的導數;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數從x_0到x_0+?x的平均變化率。1.導數的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結算的利息不少于按月結算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構成等比數列.解:(1)設這筆錢存 n 個月以后的本利和組成一個數列{a_n },則{a_n }是等比數列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數列{b_n },則{b_n }也是一個等比數列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
我們知道數列是一種特殊的函數,在函數的研究中,我們在理解了函數的一般概念,了解了函數變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數不僅加深了對函數的理解,而且掌握了冪函數,指數函數,對數函數,三角函數等非常有用的函數模型。類似地,在了解了數列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數學問題,從中感受數學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經驗表明,每經過一年其價值會減少d(d為正常數)萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數列.10年之內(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數列{an}.由已知條件,得an=an-1-d(n≥2).所以數列{an}是一個公差為-d的等差數列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數列表示各正方形的面積,根據條件可知,這是一個等比數列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
課前小測1.思考辨析(1)若Sn為等差數列{an}的前n項和,則數列Snn也是等差數列.( )(2)若a1>0,d<0,則等差數列中所有正項之和最大.( )(3)在等差數列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數為2n+1的等差數列中,所有奇數項的和為165,所有偶數項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數依次排成一列,構成數列{an} ,設數列{an} 的前n項和為S_n。
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數f (x)在這個區(qū)間上單調遞減. ( )(2)函數在某一點的導數越大,函數在該點處的切線越“陡峭”. ( )(3)函數在某個區(qū)間上變化越快,函數在這個區(qū)間上導數的絕對值越大.( )(4)判斷函數單調性時,在區(qū)間內的個別點f ′(x)=0,不影響函數在此區(qū)間的單調性.( )[解析] (1)√ 函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數在某個區(qū)間上變化的快慢,和函數導數的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數f (x)在區(qū)間內單調遞增(減),故f ′(x)=0不影響函數單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數判斷下列函數的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數在R上單調遞增,如圖(1)所示
1.對稱性與首末兩端“等距離”的兩個二項式系數相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數時,中間的一項C_n^(n/2)取得最大值;當n是奇數時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數之和為2^n1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
有的學者還指出,要堅持集體主義還必須將集體主義的價值精神與社會主義市場經濟的要求結合起來,批判地繼承計劃經濟時代倡導的集體主義,合理地對其進行體系結構的調整和內容的更新,形成新的集體主義。與傳統(tǒng)的集體主義相比,這種新的集體主義應具有如下兩個主要特點。其一,強調集體的出發(fā)點是為了維護集體成員的正當個人利益。傳統(tǒng)的集體主義具有片面強調集體至上性、絕對性的弊端;新的集體主義必須依據社會主義市場經濟的現(xiàn)實要求,將集體應當對個人承擔的義務加以科學的闡釋。真正的集體應該維護各個集體成員的個人利益,實現(xiàn)組成集體的各個主體的自我價值。這種新型的集體主義是對社會主義市場經濟條件下社會關系的真實反映,既與個人主義有本質區(qū)別,也不同于傳統(tǒng)的集體主義。其二,要體現(xiàn)道德要求的先進性與廣泛性的統(tǒng)一。
民族精神是一個民族賴以生存和發(fā)展的精神支撐。一個民族,沒有振奮的精神和高尚的品格,不可能自立于世界民族之林?!拌F人”精神是“愛國、創(chuàng)業(yè)、求實、奉獻”的大慶精神的典型化、人格化。其主要方面包括:“為祖國分憂、為民族爭氣”的愛國主義精神;為“早日把中國石油落后的帽子甩到太平洋里去”,“寧肯少活二十年,拼命也要拿下大油田”的忘我拼搏精神;干事業(yè)“有條件要上,沒有條件創(chuàng)造條件也要上”的艱苦奮斗精神;“要為油田負責一輩子”,“干工作要經得起子孫萬代檢查”,對工作精益求精,為革命“練一身硬功夫、真本事”的科學求實精神;不計名利,不計報酬,埋頭苦干的“老黃?!本瘢坏鹊?。40多年來,“鐵人”精神早已家喻戶曉,深入人心,成為大慶人的共同理想、信念和行為準則?!拌F人”精神是對王進喜崇高思想、優(yōu)秀品德的高度概括,體現(xiàn)了我國工人階級精神風貌和中華民族傳統(tǒng)美德的完美結合?!拌F人”精神是戰(zhàn)勝困難、勇往直前、不斷取得新勝利的巨大精神力量?!拌F人”精神是我們強大的精神支柱。
1.促使美國成為一個移民國家的因素是:①美洲屬于未開發(fā)的新大陸,需要大量的勞動力;②歐洲失業(yè)工人和破產農民增加,人們?yōu)榱俗非蟾玫慕洕鲞w往美洲;③新航線的開辟為人們順利遷移掃除了障礙;④殖民擴張是人口遷移的促進因素,加快了人口遷移的過程。導致美國人口在本土范圍內頻繁遷移的原因,歸納起來有:第一次人口遷移是戰(zhàn)爭因素,第二次是城市化;第三次是自然環(huán)境、經濟環(huán)境的變化;第四次是經濟格局的變化,即西部和南部新資源的發(fā)現(xiàn)和新興工業(yè)的發(fā)展。2.我國古代的人口遷移,深受統(tǒng)治者及其行政力量的束縛。封建帝王為了加強本國的經濟和軍事實力,對人口遷移嚴加控制。只有當戰(zhàn)亂發(fā)生的時候,這種控制才得到削弱,人們?yōu)榱硕惚軕?zhàn)亂,尋找安定的生活環(huán)境,不得不進行大規(guī)模的遷移。我國近幾十年的人口遷移主要是由生產資料和勞動力數量上的地區(qū)分布不平衡造成的,是經濟因素在起主導作用,與古代的人口遷移截然不同。
老師們,同學們,大家早上好!今天我國旗下講話的主題是:爭做文明學生,共筑美好校園。大家知道做什么事情不簡單、做什么事情不平凡嗎?把每一件簡單的事情做好,就是不簡單;把每一件平凡的事情做好,就是不平凡。我的一個好朋友,每次在食堂吃完飯,都會一邊把盤子遞給收餐具的阿姨,一邊禮貌地對她說聲“謝謝”。收餐具的阿姨通常忙得顧不上回答——她們正以最快的速度整理著幾只手同時甩在桌上的餐盤。不過也有時候,阿姨會沖我們笑笑,或者開心地說“不用謝”,然后繼續(xù)麻利地工作。我不知道這一句簡單的“謝謝”能有多大的作用,不過我想,至少這個阿姨的一天可以因此多一絲愉快,我們的校園里可以多一點文明的正能量。
尊敬的老師、領導,親愛的同學們:大家早上好!今天我發(fā)言的題目是“珍惜糧食,做勤勉節(jié)儉的xx學子”。關于這個題目,我的發(fā)言有三點。第一,珍惜糧食,從我做起。“誰知盤中餐,粒粒皆辛苦”告訴了我們糧食來之不易的道理。學校領導很早就倡導全校師生開展“光盤行動”:盤里不剩菜,碗里不剩米。無論對于老師還是學生,這個標準都不能打任何折扣??墒乾F(xiàn)在,我們仍然可以看到有同學浪費食物的現(xiàn)象,吃不完的米飯隨意倒掉,而且很“大方”、不猶豫。試想,我們學校近300名師生就餐,每人每頓少浪費一粒米,這數額積累下來,至少可以讓一個飽受饑餓之苦的人解決溫飽問題,這樣下來,又可以節(jié)約資源求得學校更好的發(fā)展,何樂而不為呢?都說溫飽不忘饑寒,增產不忘節(jié)約。我們處在衣食無憂的好時代,學校也處在穩(wěn)步發(fā)展的關鍵時期,我們要從自身做起,珍惜糧食,杜絕浪費。