1、教學(xué)對(duì)象,九年級(jí)學(xué)生,實(shí)踐課 2、近幾年隨著體育加試的進(jìn)行,尤其是今年又把跳繩例如體育加試項(xiàng)目。九年級(jí)學(xué)生,通過(guò)前段時(shí)間的學(xué)習(xí),體能普遍較好,對(duì)跳繩有關(guān)的練習(xí)方式都有較強(qiáng)的興趣?! √K方面,基本的正搖跳,長(zhǎng)繩的雙人搖跳、多人搖跳等技術(shù)動(dòng)作有較好的基礎(chǔ)。大部分學(xué)生具備了向較高一層次難度發(fā)展的條件。比如:正搖跳,長(zhǎng)繩的雙人搖跳、多人搖跳多跳等,這些技術(shù)動(dòng)作學(xué)生都有較濃的興趣?! ?、另外中考體育加試的需要,學(xué)生學(xué)習(xí)跳繩的熱情、組織紀(jì)律、認(rèn)識(shí)能力、身體素質(zhì)相對(duì)其他年級(jí)有一定的優(yōu)勢(shì)。因此,我根據(jù)學(xué)生的實(shí)際情況,安排本節(jié)課的內(nèi)容,讓學(xué)生能更好的接受本次課的教學(xué)。另一方面,九年級(jí)學(xué)生正處自身發(fā)育的高峰期,靈敏,協(xié)調(diào)素質(zhì)的快速增長(zhǎng)有可性強(qiáng)的特點(diǎn),跳繩恰好有此方面的鍛煉價(jià)值,這更增加提高了學(xué)生對(duì)跳繩的熱愛(ài)。同時(shí)也使我國(guó)民間體育得到更好的發(fā)展。
陰陽(yáng)原是指日光的向背,向日為陽(yáng),背日為陰。我國(guó)古代地名中的“陰”和“陽(yáng)”實(shí)際上是一種方位指示,“日之所照曰陽(yáng)”,也就是說(shuō)太陽(yáng)所能照到的地方就稱(chēng)為陽(yáng)。 山水陰陽(yáng)是說(shuō)古代以山南、水北為陽(yáng),以山北、水南為陰。 形成這種局面的原因是山峰高聳,日光能照射到的地方是山的南面;而河流位于地平面以下,所以太陽(yáng)能照射到的地方其實(shí)是河流的北面。 故有“山南水北謂之陽(yáng),山北水南謂之陰”的說(shuō)法。在我國(guó)歷史上,很多地名及地理表述都與此關(guān)系密切,如江陰、衡陽(yáng)、漢陽(yáng)等。 《愚公移山》 中說(shuō):“指通豫南,達(dá)于漢陰?!?其中的“漢陰”是指漢水的南岸。 “泰山之陽(yáng),汶水西流;其陰,濟(jì)水東流”(姚鼐《登泰山記》)、“所謂華山洞(南宋王象之《輿地紀(jì)勝》寫(xiě)為‘華陽(yáng)洞’。 看正文下句,應(yīng)為‘華陽(yáng)洞’)者,以其乃華山之陽(yáng)名之也”
初讀古詩(shī),整體感知。 1.請(qǐng)同學(xué)們用自己喜歡的方式讀古詩(shī)《四時(shí)田園雜興》(其三十一)。要求借助拼音學(xué)會(huì)生字,把古詩(shī)讀正確,讀通順?! ?.指名多個(gè)學(xué)生朗讀古詩(shī),師生評(píng)議,糾正讀得不準(zhǔn)確的字音。尤其注意讀準(zhǔn)“晝、耘”的讀音。指導(dǎo)讀準(zhǔn)多音字“供”([ gōng ]作動(dòng)詞時(shí),準(zhǔn)備著東西給需要的人應(yīng)用:供應(yīng)、供給(jǐ)、供求、供需、供銷(xiāo)、提供、供不應(yīng)求。[ góng ]奉獻(xiàn):供養(yǎng)、供獻(xiàn)、供奉、供佛、供職;祭祀用的東西:供桌、供品、供果、上供;被審問(wèn)時(shí)在法庭上述說(shuō)事實(shí):招供、口供、供狀、供認(rèn)、供詞。)在詩(shī)中讀四聲?! ?.把古詩(shī)反復(fù)多讀幾遍,通過(guò)查字典、問(wèn)同學(xué)、問(wèn)老師等方式,結(jié)合課文注釋?zhuān)斫庠?shī)句中詞語(yǔ)的意思,用自己的話(huà)說(shuō)說(shuō)這首詩(shī)大體寫(xiě)了什么。記下不理解的地方和不明白的問(wèn)題?! ?.學(xué)生自愿舉手發(fā)言,其他同學(xué)進(jìn)行評(píng)議,也可以做補(bǔ)充發(fā)言。全班交流,教師相機(jī)引導(dǎo)并小結(jié)。
在入情入境中誦讀成韻 1.配樂(lè)范讀,想象畫(huà)面: ?。?)學(xué)生邊看插圖邊聽(tīng)老師配樂(lè)朗讀,想象詩(shī)中所描繪的畫(huà)面?! 。?)學(xué)生自由交流想象中的畫(huà)面,老師激勵(lì)小結(jié)。 預(yù)設(shè):山坡上的小草發(fā)芽了,嫩綠嫩綠的。黃鶯在空中飛來(lái)飛去。河堤旁的柳條發(fā)芽了,幾個(gè)下朋友放學(xué)回來(lái),趁著東風(fēng),趕忙放起了風(fēng)箏…… 2.借助插圖,啟發(fā)想象:黃鶯一邊飛一邊干什么?(嘰嘰喳喳地叫)它好像在說(shuō)什么? 再次啟發(fā)想象:春風(fēng)輕輕地吹來(lái),柳條會(huì)怎樣呢?(輕輕擺動(dòng),好像在跳舞陶醉在了美麗的春色里……) 詩(shī)人高鼎看到這樣的景致寫(xiě)下了這樣的詩(shī)句:出示“草長(zhǎng)鶯飛二月天,拂堤楊柳醉春煙”。(學(xué)生齊讀) 讓我們想象著春天的美麗景色,有滋有味地誦讀。學(xué)生練讀、指名讀、引讀。 3.聯(lián)系生活,換位體驗(yàn),:在這樣美妙的春光里,沐浴著和煦的春風(fēng),(出示兒童放紙鳶圖片)孩子們放起風(fēng)箏,你們放過(guò)風(fēng)箏嗎?你放風(fēng)箏時(shí)是怎樣的心情?(學(xué)生自由發(fā)言)
《核舟記》是一篇說(shuō)明性質(zhì)的文言文,作者在完整而深刻地理解雕刻藝術(shù)構(gòu)思的基礎(chǔ)上,合理安排材料,運(yùn)用簡(jiǎn)練生動(dòng)的文字再現(xiàn)了“核舟”的形象。本課教學(xué)設(shè)計(jì),注重學(xué)生自主學(xué)習(xí)、自主探究、自主拓展,教師予以有效指導(dǎo)。教學(xué)中的各個(gè)環(huán)節(jié)環(huán)環(huán)相扣,思路清晰。在自主學(xué)習(xí)的過(guò)程中,掌握文章的基本內(nèi)容;在合作學(xué)習(xí)的過(guò)程中,完成文言知識(shí)卡片的歸納整理;在探究學(xué)習(xí)的過(guò)程中,通過(guò)“找一找”“品一品”兩個(gè)環(huán)節(jié),讓學(xué)生深入到文本中進(jìn)行賞析,感知核舟的奇巧,感悟雕刻者技藝的精巧和構(gòu)思的精妙,學(xué)習(xí)作者行文的巧妙,體會(huì)到文章語(yǔ)言的簡(jiǎn)潔、準(zhǔn)確和生動(dòng);在布置作業(yè)環(huán)節(jié),聯(lián)系課堂內(nèi)外,有拓展延伸的閱讀,有學(xué)以致用的練筆。整個(gè)教學(xué)設(shè)計(jì)適應(yīng)了學(xué)生各種能力的發(fā)展需要,提高了學(xué)生的語(yǔ)文素養(yǎng)。疑難探究《核舟記》一般被視為說(shuō)明文,但文中包含了大量的描寫(xiě)。對(duì)此應(yīng)該如何理解?首先,說(shuō)明文是今天我們按照記敘文、說(shuō)明文、議論文三大文體分類(lèi)為之做出的界定,而古人的文體分類(lèi)中并無(wú)“說(shuō)明文”一類(lèi),《核舟記》這種記物之文和記游、記亭臺(tái)樓閣之文都屬于“雜記”。
結(jié)束語(yǔ):懷才不遇的柳宗元,他像陶淵明一樣“采菊東籬下,悠然見(jiàn)南山”,也像吳均一樣“從流飄蕩,任意東西”,面對(duì)“凄神寒骨,悄愴幽邃”的小石潭,他選擇“記之而去”,這其實(shí)體現(xiàn)的是柳宗元的人生態(tài)度。他有著高貴的靈魂,選擇了自己想要的人生。在柳宗元身上,我們看到了古代圣賢在人生困頓之時(shí)堅(jiān)守的濟(jì)世情懷,那么我們又該如何實(shí)現(xiàn)人生的價(jià)值呢?這是我們要認(rèn)真思考的一個(gè)人生命題。【設(shè)計(jì)意圖】本環(huán)節(jié)通過(guò)抓住景物特點(diǎn),幫助學(xué)生揣摩分析作者情感,體會(huì)寓情于景的特點(diǎn)。并通過(guò)插入作者的相關(guān)背景,引導(dǎo)學(xué)生準(zhǔn)確把握作者心情由樂(lè)而悲的緣由,依據(jù)文本,具體深入而非概念化地理解作者“悲”的由來(lái)。三、存儲(chǔ)總結(jié)1.師小結(jié)山水游記的寫(xiě)法(1)合理安排寫(xiě)景方法。如移步換景、定點(diǎn)觀察等。(2)細(xì)致生動(dòng)地描繪游覽過(guò)程中所看到的主要景物,突出其特點(diǎn)。(3)巧妙地運(yùn)用多種修辭手法、描寫(xiě)手法,使語(yǔ)言生動(dòng)優(yōu)美,富于變化。(4)融情于景,情景交融。2.推薦閱讀課后閱讀“永州八記”中的其他篇目。
2.如何找一條線(xiàn)段的黃金分割點(diǎn),以及會(huì)畫(huà)黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線(xiàn)段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋?zhuān)瑑抖嗌俨藕媚兀刻珴馓《疾恍?什么比例最合適,要通過(guò)試驗(yàn)來(lái)確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線(xiàn)段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過(guò)多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書(shū)設(shè)計(jì)
(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問(wèn)小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來(lái)判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問(wèn)題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對(duì)應(yīng)邊的比稱(chēng)為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問(wèn)題;學(xué)生活動(dòng):學(xué)生通過(guò)例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4
解:(1)根據(jù)題意,可得y=100025x,化簡(jiǎn)得y=40x;(2)根據(jù)題設(shè)可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實(shí)數(shù),但在解決實(shí)際問(wèn)題的過(guò)程中,自變量的取值范圍要根據(jù)實(shí)際情況來(lái)確定.解題過(guò)程中應(yīng)該注意對(duì)題意的正確理解.三、板書(shū)設(shè)計(jì)反比例函數(shù)概念:一般地,如果兩個(gè)變量x,y之間 的對(duì)應(yīng)關(guān)系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱(chēng)y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達(dá)式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過(guò)程,發(fā)展學(xué)生的思維.利用多媒體創(chuàng)設(shè)大量生活情境,讓學(xué)生體驗(yàn)數(shù)學(xué)來(lái)源于生活實(shí)際,并為生活實(shí)際服務(wù),讓學(xué)生感受數(shù)學(xué)有用,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
解析:想要看起來(lái)更美,則鞋底到肚臍的長(zhǎng)度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來(lái)會(huì)更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來(lái)會(huì)更美.易錯(cuò)提醒:要準(zhǔn)確理解黃金分割的概念,較長(zhǎng)線(xiàn)段的長(zhǎng)是全段長(zhǎng)的0.618.注意此題中全段長(zhǎng)是身高與高跟鞋鞋高之和.三、板書(shū)設(shè)計(jì)黃金分割定義:一般地,點(diǎn)C把線(xiàn)段AB分成兩條線(xiàn)段AC 和BC,如果ACAB=BCAC,那么稱(chēng)線(xiàn)段AB被點(diǎn) C黃金分割黃金分割點(diǎn):一條線(xiàn)段有兩個(gè)黃金分割點(diǎn)黃金比:較長(zhǎng)線(xiàn)段:原線(xiàn)段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點(diǎn)的探究過(guò)程,通過(guò)問(wèn)題情境的創(chuàng)設(shè)和解決過(guò)程,體會(huì)黃金分割的文化價(jià)值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實(shí)際操作、思考、交流等過(guò)程中增強(qiáng)學(xué)生的實(shí)踐意識(shí)和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個(gè)別輔導(dǎo),學(xué)生完畢教師給予評(píng)估肯定。II鞏固練習(xí):限時(shí)完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書(shū)小結(jié))今天通過(guò)生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對(duì)兩種變化量,并且這兩個(gè)變化的量可以寫(xiě)成 (k為常數(shù),k≠0)同時(shí)要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時(shí),該式?jīng)]意義);③當(dāng) 可寫(xiě)為 時(shí)注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個(gè)變量相對(duì)應(yīng) 的任意一對(duì)對(duì)應(yīng)值的積來(lái)求得,只要k確定了,這個(gè)函數(shù)就確定了。
方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書(shū)設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
當(dāng)汽車(chē)行駛在鄉(xiāng)間小道時(shí),作家馮驥才再也沒(méi)有了寫(xiě)作的沖動(dòng)。往日白磚青瓦的農(nóng)舍冒出了西洋式的尖頂和閃著異光的馬賽克,炊煙裊裊,小橋流水成了埋藏在心底的夢(mèng)。馮先生開(kāi)始四處奔波,大聲疾呼:救救我們的文化遺產(chǎn)!中國(guó)文化博大而寬廣。她無(wú)處不在——融于書(shū)本,徜徉于江南小道,盤(pán)旋在峭壁飛檐……我們被這種濃厚的文化信息包圍著,卻道貌岸然地做著劊子手。忘記歷史就是背叛。我們的文化遺產(chǎn)是歷史的見(jiàn)證。秦始皇的兵馬俑至今氣宇軒昂地挺立著,隋朝大運(yùn)河的波瀾依舊拍打著千年的岸堤……孟江女的哭聲凄婉悲慟,纖夫的號(hào)子似乎仍在耳邊縈繞。沉淀了千年的沉浮、繁華、屈辱、悲憤,這些文化遺產(chǎn)燙帖了坎坷的心靈,將肅穆呈于世人。刀光劍影去了,長(zhǎng)歌悲哭停止了,豪情廝殺消逝了……一切隨著大江東去,只有千年松柏和著輕風(fēng)耳語(yǔ)。
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱(chēng)圖形嗎?如果是,請(qǐng)找出對(duì)稱(chēng)中心.反比例函數(shù)圖象是軸對(duì)稱(chēng)圖形嗎?如果是,請(qǐng)指出它的對(duì)稱(chēng)軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線(xiàn)分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線(xiàn)又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過(guò)程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線(xiàn)性的,它的圖象是雙曲線(xiàn);(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱(chēng)圖形,又是軸對(duì)稱(chēng)圖形。
教學(xué)目標(biāo):1.會(huì)畫(huà)直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫(huà)法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過(guò) 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來(lái)的三種視圖畫(huà)出來(lái),并與同伴交流。比較:小亮畫(huà)出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫(huà)的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿(mǎn)足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿(mǎn)足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線(xiàn)分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類(lèi)型三】 利用正方形的性質(zhì)證明線(xiàn)段相等如圖,已知過(guò)正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線(xiàn)互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線(xiàn)互相垂直平分證明線(xiàn)段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線(xiàn),這樣可以使分散的條件集中.