問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對(duì)應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對(duì)應(yīng)高和對(duì)應(yīng)邊的兩對(duì)三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過程。接著問學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對(duì)應(yīng)高的比等于相似比,所以命題1具有一般性。而對(duì)于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個(gè)命題。
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再?gòu)漠嫹ㄖ刑釤挸鰭佄锞€的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
六、教學(xué)反思 從這節(jié)課的實(shí)施情況看,課堂實(shí)施與原先的公開課教案是比較一致的,效果也是比較好的,主要體現(xiàn)于以下兩點(diǎn): 1、效果得益于“跳出”--跳出教材框框 剛開始備課和試教時(shí),我打算充沛利用教材,根據(jù)教材上的內(nèi)容出示幻燈片讓同學(xué)說一說,但一節(jié)課下來顯得很單調(diào)、信息量很少,體現(xiàn)不出生活中數(shù)的味道。于是我開放教材,跳出教材的框框,課前安排一個(gè)“找生活中的數(shù)”實(shí)踐活動(dòng)把同學(xué)放到社會(huì)生活之林中去,讓他們先找些“野食”吃。這樣,課前在準(zhǔn)備過程當(dāng)中積累的素材多了,同學(xué)的學(xué)習(xí)效益大大提高了。同學(xué)在豐富多彩的實(shí)際生活中自由自在地采擷自身感興趣的“果子”,他們采來的“果子”是絢麗多姿的,然后回到課堂交流,共享到了“果子”的豐富,起到“以一當(dāng)數(shù)十”的作用。 這個(gè)“跳出”戰(zhàn)略,體現(xiàn)了現(xiàn)代科學(xué)“系統(tǒng)論”的理論。系統(tǒng)論認(rèn)為:系統(tǒng)只有開放,不時(shí)吸收外界的信息,才干使自身“有序”。
8、小結(jié):不管因數(shù)中間是否有0,都要用這個(gè)一位數(shù)去乘多位數(shù)里每一個(gè)數(shù)位上的數(shù),即使十位上是0也要乘。這就是今天我們學(xué)習(xí)的新知識(shí),因數(shù)中間有0的乘法。(板題:因數(shù)中間有0的乘法)[設(shè)計(jì)意圖:通過學(xué)生的自主探索,獲得對(duì)“0和一個(gè)數(shù)相乘得0”的理性認(rèn)識(shí)的基礎(chǔ)上,進(jìn)一步運(yùn)用估算、口算以及學(xué)過的筆算方法上算法上進(jìn)行探索,中間有0的三位數(shù)都是接近整百的數(shù),這為學(xué)生運(yùn)用估算提供了很好的機(jī)會(huì)。通過估算,能使學(xué)生對(duì)筆算結(jié)果有一個(gè)大致的把握,從而可以在很大程度上減少筆算中錯(cuò)誤的發(fā)生,通過教學(xué),努力使學(xué)生感受到:把估算和筆算結(jié)合起來,可以提高計(jì)算的正確率。逐步培養(yǎng)學(xué)生在筆算時(shí)自覺進(jìn)行估算的意識(shí)。]三.鞏固練習(xí)談話:現(xiàn)在正是小朋友們長(zhǎng)身體的時(shí)候,所以我們一定要參加體育鍛煉呦!今天,我們一起去參加一個(gè)智力長(zhǎng)跑,好嗎?
想一想:為什么在師生猜拳中老師一直說“5”能贏?為什么選擇和多的那隊(duì)沒勝,而選擇和少的那隊(duì)卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個(gè)升華層次,學(xué)生通過互動(dòng)游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對(duì)“可能性”的理解達(dá)到了一個(gè)更高水平,有效地完成了本課重難點(diǎn)教學(xué)。)(4)實(shí)踐驗(yàn)證。實(shí)踐驗(yàn)證理論。再一次組織學(xué)生有目的地猜和,進(jìn)行實(shí)踐驗(yàn)證。讓理論與實(shí)踐有機(jī)的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷活動(dòng),凡到商店購(gòu)物的顧客都可參加《轉(zhuǎn)盤轉(zhuǎn)轉(zhuǎn)樂》活動(dòng)。每位顧客可轉(zhuǎn)兩次,用兩次指針?biāo)笖?shù)相加得到一個(gè)和,不同的和能得到相應(yīng)的獎(jiǎng)項(xiàng)。
師:同學(xué)們真聰明,小精靈的問題回答出來了,現(xiàn)在就讓我們一起走進(jìn)兒童樂園吧。(出示課件)請(qǐng)大家注意觀察,兒童樂園中都有哪些景點(diǎn)?師:從兒童樂園出發(fā)經(jīng)過百鳥園去猴山一共有幾條路?請(qǐng)同學(xué)們仔細(xì)觀察:從兒童樂園到百鳥園有幾條路?從百鳥園去猴山有幾條路?(生回答。)師:我們給這5條路分別標(biāo)上序號(hào)。(課件演示)現(xiàn)在請(qǐng)同學(xué)們想一想從兒童樂園的入口經(jīng)過百鳥園到達(dá)猴山一共有幾條路線?請(qǐng)同學(xué)們把答案寫在記錄紙上。(生匯報(bào)。)師:路線設(shè)計(jì)好了,讓我們一起到猴山看一看可愛的小猴子吧?。ǚ藕锷降匿浵瘛#煟嚎?,它們是一對(duì)著名的動(dòng)物小明星,會(huì)演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個(gè)人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個(gè)人一共要照多少?gòu)埾嗥瑑耗兀?/p>
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級(jí)共有600名學(xué)生,估計(jì)該年級(jí)在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級(jí)在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級(jí)在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個(gè)統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時(shí),由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對(duì)應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
(一)創(chuàng)設(shè)問題情境:師:小朋友,你們喜歡老師漂亮一點(diǎn)呢還是喜歡老師丑一點(diǎn)?生:大多數(shù)的小朋友說喜歡老師漂亮。師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請(qǐng)小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見,并說出了自己的理由。師:謝謝。你們的建議都不錯(cuò)。那我這一件上衣、三件下衣能有多少種不同的穿法呢?老師接著問:那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說4種、有說5種、也有說6種的,到底有幾種呢?(二)1.自主合作探索新知試一試師:請(qǐng)同學(xué)們也試著想一想,如果你覺得直接想象有困難的話可以借助手中的學(xué)具卡片擺一擺。學(xué)生活動(dòng)教師巡視。2.發(fā)現(xiàn)問題學(xué)生匯報(bào)所寫個(gè)數(shù),教師根據(jù)巡視的情況重點(diǎn)展示幾份,引導(dǎo)學(xué)生發(fā)現(xiàn)問題:有的重復(fù)了,有的漏寫了。
方法三:我先把數(shù)字1放在個(gè)位,然后把數(shù)字2和3分別放在十位組成21和31;我再把數(shù)字2放在個(gè)位,然后把數(shù)字1和3分別放在十位組成12和32;我再把數(shù)字3放在個(gè)位,然后把數(shù)字1和2分別放在十位組成13和23,一共擺出了6個(gè)兩位數(shù)。(21、31、12、32、13、23)每種方法說完后師問:還能擺嗎?(再擺就要重復(fù)了!提示:不能遺漏也不能重復(fù))師小結(jié):排數(shù)的時(shí)候按照一定的順序既不會(huì)重復(fù)也不會(huì)遺漏。我們用3個(gè)不同的一位數(shù)拼成了幾個(gè)不同的兩位數(shù)?(板書:6個(gè))可拓展:三只動(dòng)物抽到卡片后最多能組成21、31、32那誰可以和聰聰一起坐呀?小貓很幸運(yùn),他抽到了2和3,那么他一定會(huì)擺出一個(gè)……(三)握手小動(dòng)物們謝謝我們幫他們一起解決了這些數(shù)學(xué)問題,一定要讓老師表示謝意,好謝謝你們。(老師過去和學(xué)生握手。分別找?guī)讉€(gè)人握手,讓學(xué)生觀察,每?jī)蓚€(gè)人握一次手。)
教學(xué)目標(biāo):知識(shí)與技能:1、使學(xué)生初步體會(huì)對(duì)策論方法在解決實(shí)際問題中的應(yīng)用。2使學(xué)生認(rèn)識(shí)到解決問題策略的多樣性,形成尋找解決問題最優(yōu)方案的意識(shí)。3、培養(yǎng)學(xué)生的應(yīng)用意識(shí)和解決實(shí)際問題的能力。過程與方法:使學(xué)生理解優(yōu)化的思想,形成從多種方案中尋找最優(yōu)方案的意識(shí),提高學(xué)生解決問題的能力。情感、態(tài)度和價(jià)值觀:使學(xué)生感受到數(shù)學(xué)在日常生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決生活中的簡(jiǎn)單問題。重點(diǎn):體會(huì)優(yōu)化的思想難點(diǎn):尋找解決問題最優(yōu)方案,提高學(xué)生解決問題的能力。教具:圖片教學(xué)過程:一、情境導(dǎo)入:1、你們聽過“田忌賽馬“的故事嗎?田忌是怎樣贏了齊王的?誰能給大家講一講這個(gè)故事?2、問:田忌的馬都不如齊王的馬,但他卻贏了?這是為什么呢?3、這節(jié)課我們就來研究研究。板書課題:數(shù)學(xué)廣角
教材分析:"雞兔同籠"問題是我國(guó)民間廣為流傳的數(shù)學(xué)趣題,最早出現(xiàn)在《孫子算經(jīng)》中。教材在本單元安排“雞兔同籠”問題,一方面可以培養(yǎng)學(xué)生的邏輯推理能力;另一方面使學(xué)生體會(huì)代數(shù)方法的一般性?!半u兔同籠”的原題數(shù)據(jù)比較大,不利于首次接觸該類問題的學(xué)生進(jìn)行探究,因此教材先編排了例1,通過化繁為間的思想,幫助學(xué)生先探索出解決該類問題的一般方法后,再解決《孫子算經(jīng)》中數(shù)據(jù)比較大的原題。解決“雞兔同籠”問題時(shí),教材展示了學(xué)生逐步解決問題的過程,既猜測(cè)、列表、假設(shè)或方程解。其中假設(shè)和列方程解是解決該類問題的餓一般方法?!凹僭O(shè)法”有利于培養(yǎng)學(xué)生的邏輯推理能力,列方程則有助于學(xué)生體會(huì)代數(shù)方法的一般性。因此在解決“雞兔同籠”問題時(shí),學(xué)生選用哪種方法均可,不強(qiáng)求用某一種方法。
雖然在此之前已經(jīng)聽過多節(jié)有關(guān)的研討課,但臨到自己教學(xué)時(shí)才真正體會(huì)到本課教學(xué)的艱難。一是信息化時(shí)代對(duì)郵政編碼的沖突。其實(shí)我在教學(xué)前也僅僅只知道學(xué)校和家庭住址的郵編,至于郵政編碼的結(jié)構(gòu)含義等是完全陌生。在課堂前測(cè)中了解到,全班僅3人有寫信寄信的經(jīng)歷(這三名學(xué)生的老家都遠(yuǎn)離湖北?。?,他們知道老家的郵編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過的舊信封??梢哉f在學(xué)習(xí)本課前師生對(duì)郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學(xué)生“一杯水”?雖然在課前布置學(xué)生收集了一些有關(guān)郵政編碼的知識(shí),自己也進(jìn)行了大量的查詢,但在實(shí)際教學(xué)中仍舊倍感吃力。如有學(xué)生質(zhì)疑“為什么書上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學(xué)校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關(guān)系?”一個(gè)接一個(gè)問題“炮轟”過來,著實(shí)招架不住。
對(duì)比分析為什么剛才咱們從不同的3個(gè)數(shù)字中選出兩個(gè),可以擺成6個(gè)不同的兩位數(shù),而現(xiàn)在三個(gè)同學(xué)每?jī)蓚€(gè)握一次手,就一共只握了3次呢?(學(xué)生討論,發(fā)表意見)(握手不存在調(diào)換位置的情況,跟順序無關(guān),而排列數(shù),位置調(diào)換就變成另一個(gè)數(shù),與順序有關(guān)。)三、實(shí)踐應(yīng)用,鞏固新知師引導(dǎo):同學(xué)們今天說得太精彩了!那我們就進(jìn)數(shù)學(xué)廣角痛痛快快地玩玩吧!(出示課件)問:進(jìn)去嗎?(再次打開課件,欣賞)1、快樂狗活動(dòng)室(練習(xí)二十三第2題)質(zhì)疑:咦,機(jī)靈貓,蘭蘭他們?nèi)ツ牧??呵,機(jī)靈貓貓想要運(yùn)動(dòng)運(yùn)動(dòng),就來到了快樂狗活動(dòng)室。(課件展示)機(jī)靈貓就是機(jī)靈貓,看他們打球還想到問題了:如果每?jī)蓚€(gè)人打一場(chǎng)乒乓球比賽,他們?nèi)艘还惨蚨嗌賵?chǎng)比賽呢?誰能很快說出來!(學(xué)生分析,指名說說)2、小喜鵲超市(練習(xí)二十三第1題)
三、說教學(xué)理念:通過觀察、猜測(cè)及動(dòng)手操作實(shí)驗(yàn)等方法,向?qū)W生滲透有序的數(shù)學(xué)思想。四、說教學(xué)過程:一、創(chuàng)設(shè)情境、激趣導(dǎo)入。小朋友們喜歡什么樣的球類運(yùn)動(dòng)呢?讓學(xué)生各抒已見。當(dāng)有人說到足球時(shí)。老師馬上引到學(xué)校冬季運(yùn)動(dòng)會(huì),我們?nèi)昙?jí)3個(gè)班的比賽情況,結(jié)果我們班得了第一。那我們班比賽了幾場(chǎng)?學(xué)生回答兩場(chǎng)。三個(gè)班比賽,每?jī)蓚€(gè)班比賽一場(chǎng),那一共要比賽多少場(chǎng)呢?四人小組合作完成。然后匯報(bào),并說理由。二.動(dòng)手實(shí)踐,自主探究1.2002年世界杯足球C組比賽有幾國(guó)家?是哪幾個(gè)國(guó)家?讓學(xué)生發(fā)表意見。他們說不出,老師再告訴他們。2.如果這四個(gè)隊(duì)每?jī)蓚€(gè)隊(duì)踢一場(chǎng)球,一共要踢多少場(chǎng)?(課件演示主題圖)3.讓學(xué)生大膽說一說、猜一猜。4.四人小組用學(xué)具卡片擺一擺、討論討論。