方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計(jì)1.二元一次方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對(duì)應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
2. 在彈性限度內(nèi),彈簧的長(zhǎng)度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長(zhǎng)15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長(zhǎng)16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長(zhǎng)度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對(duì)于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問題。(難點(diǎn))教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個(gè)相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點(diǎn)四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯(cuò)角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點(diǎn)E作AB的平行線.證明:如圖所示,過點(diǎn)E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點(diǎn)作一條直線或線段的平行線是我們常作的輔助線.
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個(gè)已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時(shí),在進(jìn)價(jià)的基礎(chǔ)上加一定利潤(rùn),其數(shù)量x與售價(jià)y的關(guān)系如下表所示,請(qǐng)你根據(jù)表中所提供的信息,列出售價(jià)y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時(shí)的售價(jià).
小劉同學(xué)用10元錢購(gòu)買兩種不同的賀卡共8張,單價(jià)分別是1元與2元.設(shè)1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個(gè)方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個(gè)相等關(guān)系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設(shè)1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結(jié):要判斷哪個(gè)方程組符合題意,可從題目中找出兩個(gè)相等關(guān)系,然后代入未知數(shù),即可得到方程組,進(jìn)而得到正確答案.三、板書設(shè)計(jì)二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學(xué)模型,學(xué)會(huì)逐步掌握基本的數(shù)學(xué)知識(shí)和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識(shí),提高解決問題的能力,感受數(shù)學(xué)創(chuàng)造的樂趣,增進(jìn)學(xué)好數(shù)學(xué)的信心,增加對(duì)數(shù)學(xué)較全面的體驗(yàn)和理解.
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時(shí),易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點(diǎn)二:利用勾股定理求面積如圖,以Rt△ABC的三邊長(zhǎng)為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因?yàn)锳E=BE,所以S△ABE=12AE·BE=12AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時(shí),要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
意圖:課后作業(yè)設(shè)計(jì)包括了三個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;作業(yè)3是為了拓廣知識(shí),進(jìn)行課后探究而設(shè)計(jì),通過此題可讓學(xué)生進(jìn)一步認(rèn)識(shí)勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強(qiáng)對(duì)本課知識(shí)的理解和掌握.教學(xué)設(shè)計(jì)反思(一)設(shè)計(jì)理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí).教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過討論來突破難點(diǎn).(二)突出重點(diǎn)、突破難點(diǎn)的策略為了讓學(xué)生在學(xué)習(xí)過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學(xué)生通過觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線的走勢(shì)看,甲隊(duì)比賽成績(jī)呈上升趨勢(shì),而乙隊(duì)比賽成績(jī)呈下降趨勢(shì);從獲勝場(chǎng)數(shù)看,甲隊(duì)勝三場(chǎng),乙隊(duì)勝兩場(chǎng),甲隊(duì)成績(jī)較好;從方差看,甲隊(duì)比賽成績(jī)比乙隊(duì)比賽成績(jī)波動(dòng)小,甲隊(duì)成績(jī)較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績(jī).方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績(jī),然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過程,通過實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識(shí);通過解決實(shí)際問題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國(guó)熱情;(2)學(xué)生加強(qiáng)了對(duì)數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時(shí)也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對(duì)勾股定理的歷史充滿了濃厚的興趣,同時(shí)也為中國(guó)古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國(guó)數(shù)學(xué)成就不夠強(qiáng),還應(yīng)發(fā)奮努力.有同學(xué)能意識(shí)這一點(diǎn),這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識(shí)要點(diǎn),數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對(duì)本節(jié)課的感受并進(jìn)行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗(yàn)證勾股定理中蘊(yùn)含的數(shù)形結(jié)合思想,學(xué)生對(duì)勾股定理的歷史的感悟及對(duì)勾股定理應(yīng)用的認(rèn)識(shí)等等.
解析:圖中∠AOB、∠COD均與∠BOC互余,根據(jù)角的和、差關(guān)系,可求得∠AOB與∠COD的度數(shù).通過計(jì)算發(fā)現(xiàn)∠AOB=∠COD,于是可以歸納∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可發(fā)現(xiàn):∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法總結(jié):檢驗(yàn)數(shù)學(xué)結(jié)論具體經(jīng)歷的過程是:觀察、度量、實(shí)驗(yàn)→猜想歸納→結(jié)論→推理→正確結(jié)論.三、板書設(shè)計(jì)為什么,要證明)推理的意義:數(shù)學(xué)結(jié)論必須經(jīng)過嚴(yán)格的論證檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法實(shí)驗(yàn)驗(yàn)證舉出反例推理證明經(jīng)歷觀察、驗(yàn)證、歸納等過程,使學(xué)生對(duì)由這些方法得到的結(jié)論產(chǎn)生懷疑,以此激發(fā)學(xué)生的好奇心,從而認(rèn)識(shí)證明的必要性,培養(yǎng)學(xué)生的推理意識(shí),了解檢驗(yàn)數(shù)學(xué)結(jié)論的常用方法:實(shí)驗(yàn)驗(yàn)證、舉出反例、推理論證等.
探究點(diǎn)二:勾股定理的簡(jiǎn)單運(yùn)用如圖,高速公路的同側(cè)有A,B兩個(gè)村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現(xiàn)要在高速公路上A1、B1之間設(shè)一個(gè)出口P,使A,B兩個(gè)村莊到P的距離之和最短,求這個(gè)最短距離和.解析:運(yùn)用“兩點(diǎn)之間線段最短”先確定出P點(diǎn)在A1B1上的位置,再利用勾股定理求出AP+BP的長(zhǎng).解:作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)B′,連接AB′,交A1B1于P點(diǎn),連BP.則AP+BP=AP+PB′=AB′,易知P點(diǎn)即為到點(diǎn)A,B距離之和最短的點(diǎn).過點(diǎn)A作AE⊥BB′于點(diǎn)E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結(jié):解這類題的關(guān)鍵在于運(yùn)用幾何知識(shí)正確找到符合條件的P點(diǎn)的位置,會(huì)構(gòu)造Rt△AB′E.三、板書設(shè)計(jì)勾股定理驗(yàn)證拼圖法面積法簡(jiǎn)單應(yīng)用通過拼圖驗(yàn)證勾股定理并體會(huì)其中數(shù)形結(jié)合的思想;應(yīng)用勾股定理解決一些實(shí)際問題,學(xué)會(huì)勾股定理的應(yīng)用并逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力,為后面的學(xué)習(xí)打下基礎(chǔ).
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤(rùn)為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤(rùn)y=甲產(chǎn)品的利潤(rùn)+乙產(chǎn)品的利潤(rùn).解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
第三環(huán)節(jié):課堂小結(jié)活動(dòng)內(nèi)容:1. 通過前面幾個(gè)題,你對(duì)列方程組解決實(shí)際問題的方法和步驟掌握的怎樣?2. 這里面應(yīng)該注意的是什么?關(guān)鍵是什么?3. 通過今天的學(xué)習(xí),你能不能解決求兩個(gè)量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實(shí)際問題的主要步驟是什么?說明:通過以上四個(gè)問題,學(xué)生基本上掌握了列二元一次方程組解決實(shí)際問題的方法和步驟,可啟發(fā)學(xué)生說出自己的心得體會(huì)及疑問.活動(dòng)意圖:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.說明:還可以建議有條件的學(xué)生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學(xué)還可互相編題考察對(duì)方;還可以設(shè)置"我為老師出難題"活動(dòng),每人編一道題,給老師,老師再提出:"誰(shuí)來幫我解難題",以此激發(fā)學(xué)生的學(xué)習(xí)興趣和信心。
8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過y軸上點(diǎn)C反射后經(jīng)過點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過的路線長(zhǎng)是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。
1.會(huì)用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對(duì)“6+7”進(jìn)行開方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
探究點(diǎn)三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點(diǎn)在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關(guān)系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時(shí),y隨x的增大而增大;k<0時(shí),y隨x的增大而減?。鍟O(shè)計(jì)1.函數(shù)與圖象之間是一一對(duì)應(yīng)的關(guān)系;2.作一個(gè)函數(shù)的圖象的一般步驟:列表,描點(diǎn),連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點(diǎn)的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線.已知函數(shù)的表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力.理解一次函數(shù)的表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.