說明:“倍增法”是一種重要的物理方法,歷史上庫侖在研究電荷間的相互作用力時曾用過此法,但學(xué)生在此前的物理學(xué)習(xí)中可能未曾遇到類似例子,因此引導(dǎo)學(xué)生通過交流,領(lǐng)會“倍增法”的妙處,這是本節(jié)課的一個要點.可用體育鍛煉中的“拉力器”來類比。(2)該方案消除摩擦力影響的方法:所用的消除方法與實驗方案2一樣。也可使用氣墊導(dǎo)軌代替木板,以更好地消除摩擦影響。(3)小車速度的確定方法:①確定打出來的點大致呈現(xiàn)什么規(guī)律:先密后疏(變加速),再均勻分布(勻速);②應(yīng)研究小車在哪個時刻的速度:在橡皮筋剛恢復(fù)原長時小車的瞬時速度,即紙帶上的點剛開始呈現(xiàn)均勻分布時的速度;③應(yīng)如何取紙帶上的點距以確定速度:由于實驗器材和每次操作的分散性,尤其是橡皮筋不可能長度、粗細完全一致,使得每次改變橡皮筋的條數(shù)后,紙帶上反映小車勻速運動的點數(shù)和點的位置,不一定都在事先的設(shè)定點(即用一條橡皮筋拉小車,橡皮筋剛好恢復(fù)原長時紙帶上的點)處。
1.教材在學(xué)生的原有加速度概念的基礎(chǔ)上來討論“勻速圓周運動速度變化快慢”的問題,讓學(xué)生知道向心加速度能夠表示勻速圓周運動物體速度變化的快慢究竟是怎么一回事。2.教材把向心加速度安排在線速度和角速度知識之后,使學(xué)生對描述勻速圓周運動的幾個物理量有一個大致的了解。3.教材從了解運動的規(guī)律過渡到了解力跟運動關(guān)系的規(guī)律;把向心加速度放在向心力之前,從運動學(xué)的角度來學(xué)習(xí)向心加速度。4.教材為了培養(yǎng)學(xué)生“用事實說話”的“態(tài)度”,讓一切論述都合乎邏輯,改變了過去從向心力推導(dǎo)向心加速度的教學(xué)方式。1.采用理論、實驗、體驗相結(jié)合的教學(xué)安排。2.教師啟發(fā)引導(dǎo),學(xué)生自主閱讀、思考,討論、交流。知識與技能1.會作矢量圖表示速度的變化量與速度之間的關(guān)系。2.加深理解加速度與速度、速度變化量的區(qū)別。3.體會勻速圓周運動向心加速度方向的分析方法。4.知道向心加速度的公式也適用于變速圓周運動;知道變速圓周運動的向心加速度的方向。
教學(xué)目標(biāo)㈠知識與技能1.要弄清實驗?zāi)康?,本實驗為驗證性實驗,目的是利用重物的自由下落驗證機械能守恒定律。2.要明確實驗原理,掌握實驗的操作方法與技巧、學(xué)會實驗數(shù)據(jù)的采集與處理,能夠進行實驗誤差的分析,從而使我們對機械能守恒定律的認識,不止停留在理論的推導(dǎo)上,而且還能夠通過親自操作和實際觀測,從感性上增加認識,深化對機械能守恒定律的理解。3.要明確織帶選取及測量瞬時速度簡單而準(zhǔn)確的方法。㈡過程與方法1.通過學(xué)生自主學(xué)習(xí),培養(yǎng)學(xué)生設(shè)計實驗、采集數(shù)據(jù),處理數(shù)據(jù)及實驗誤差分析的能力。2.通過同學(xué)們的親自操作和實際觀測掌握實驗的方法與技巧。3.通過對紙帶的處理過程培養(yǎng)學(xué)生獲取信息、處理信息的能力,體會處理問題的方法,領(lǐng)悟如何間接測一些不能直接測量的物理量的方法。
(一)知識與技能1.理解重力勢能的概念,會用重力勢能的定義進行計算。2.理解重力勢能的變化和重力做功的關(guān)系,知道重力做功與路徑無關(guān)。3.知道重力勢能的相對性,知道重力勢能是物體和地球系統(tǒng)共有的(二)過程與方法:用所學(xué)功的概念推導(dǎo)重力做功與路徑的關(guān)系,親身感受知識的建立過程(三)情感、態(tài)度與價值觀1.滲透從對生活中有關(guān)物理現(xiàn)象的觀察,得到物理結(jié)論的方法,激發(fā)和培養(yǎng)學(xué)生探索自然規(guī)律的興趣.2.培養(yǎng)學(xué)生遵守社會公德,防止高空墜物?!窘虒W(xué)重點】重力勢能的概念及重力做功跟物體重力勢能改變的關(guān)系。【教學(xué)難點】重力勢能的系統(tǒng)性和相對性。【教學(xué)方法】啟發(fā)、引導(dǎo)、講練結(jié)合【教學(xué)過程】一、新課引入有句話是“搬起石頭砸自己的腳”,從物理的角度看待這一問題,搬起的石頭有了做功的本領(lǐng),它就具有了能,這種能我們稱為重力勢能。我們今天就來學(xué)習(xí)重力勢能。二、新課教學(xué)
一、學(xué)習(xí)任務(wù)分析1.教材的地位和作用在物理學(xué)中,能量并不是由功定義的。能量的概念是在人類追尋“運動中的守恒量是什么”的過程中發(fā)展起來的。能量概念之所以重要,就是因為它是一個守恒量。守恒關(guān)系是自然中十分重要的關(guān)系,從中學(xué)開始加強學(xué)生對守恒關(guān)系的認識是有益的,因為它是極為重要的研究方向。根據(jù)這種認識,所以本節(jié)從追尋守恒量出發(fā)引入能量概念,為能量學(xué)習(xí)奠定了基礎(chǔ)并把這種物理思想滲透在能量學(xué)習(xí)的全過程。2.學(xué)習(xí)的主要任務(wù)“追尋守恒量”一節(jié),主要是使學(xué)生了解守恒思想的重要性。學(xué)生在學(xué)習(xí)本節(jié)課前已經(jīng)學(xué)習(xí)了能量的有關(guān)知識,在過去的教學(xué)中,是先學(xué)習(xí)能量的概念,而后研究一兩個具體問題,發(fā)現(xiàn)動能與勢能之和在某些過程中不變,由此引出機械能守恒定律?!皺C械能守恒”這個詞學(xué)生并不陌生,但是讓學(xué)生說出自己對它的認識又不是一件容易的事。
知識與技能1.知道地心說和日心說的基本內(nèi)容.2.知道所有行星繞太陽運動的軌道都是橢圓,太陽處在橢圓的一個焦點上.3.知道所有行星的軌道的半長軸的三次方跟它的公轉(zhuǎn)周期的二次方的比值都相等,且這個比值與行星的質(zhì)量無關(guān),但與太陽的質(zhì)量有關(guān).4.理解人們對行星運動的認識過程是漫長復(fù)雜的,真理是來之不易的.過程與方法通過托勒密、哥白尼、第谷·布拉赫、開普勒等幾位科學(xué)家對行星運動的不同認識,了解人類認識事物本質(zhì)的曲折性并加深對行星運動的理解.情感、態(tài)度與價值觀1.澄清對天體運動裨秘、模糊的認識,掌握人類認識自然規(guī)律的科學(xué)方法.2.感悟科學(xué)是人類進步不竭的動力.教學(xué)重點理解和掌握開普勒行星運動定律,認識行星的運動.學(xué)好本節(jié)有利于對宇宙中行星的運動規(guī)律的認識,掌握人類認識自然規(guī)律的科學(xué)方法,并有利于對人造衛(wèi)星的學(xué)習(xí).
(給出儀器后先讓學(xué)生思考如何設(shè)計實驗、安裝儀器、設(shè)計實驗步驟,而后教師總結(jié))實驗步驟如下:①安裝調(diào)整斜槽 :用圖釘把白紙釘在豎直板上,在木板的左上角固定斜槽。②調(diào)整木板 :用懸掛在槽口的重錘線把木板調(diào)整到豎直方向,并使木板平面與小球下落的豎直面平行,然后把重錘線方向記錄到釘在木板上的白紙上,固定木板,使在重復(fù)實驗的過程中,木板與斜槽的相對位置保持不變。③確定坐標(biāo)原點:把小球放在槽口處,用鉛筆記下小球在槽口時球心在木板上的水平投影點O,O即為坐標(biāo)原點。④描繪運動軌跡 :用鉛筆的筆尖輕輕地靠在木板的平面上,不斷調(diào)整筆尖的位置,使從斜槽上滾下的小球正好碰到筆尖,然后就用鉛筆在該處白紙上點上一個黑點,這就記下了小球球心所對應(yīng)的位置。保證小球每次從槽上開始滾下的位置都相同,用同樣的方法可找出小球平拋軌跡上的一系列位置。取下白紙,描繪小球做平拋運動的軌跡。
動畫展示三個宇宙速度(四) 讓學(xué)生具有振興中華的使命感與責(zé)任感本節(jié)課的最后,播放了一段美國登月的視頻,讓學(xué)生發(fā)現(xiàn)一些奇妙的物理現(xiàn)象,引導(dǎo)學(xué)生發(fā)現(xiàn)月球的背景是什么顏色,宇航員行走的模樣等等,預(yù)計不久的將來,哪個國家也將登上月球,同學(xué)們高呼“中國”,那么我們現(xiàn)在能做些什么呢,讓同學(xué)感想到:我們是祖國的未來的希望,現(xiàn)在需要努力學(xué)習(xí)科學(xué)文化知識,將來為祖國的航天事業(yè)做貢獻。要培養(yǎng)學(xué)生堅韌不撥、勇于探索、協(xié)力合作的科學(xué)精神以及嚴謹求實、謙虛謹慎、勇于質(zhì)疑科學(xué)態(tài)度;也要培養(yǎng)學(xué)習(xí)者熱愛科學(xué)、熱愛祖國的情感;努力學(xué)習(xí)、振興中華的責(zé)任感。這些策略在本案例中得到了體現(xiàn)。(五)練習(xí)反饋,拓展延伸:[例題1]“2003年10月15日9時,我國神舟五號宇宙飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,把我國第一位航天員楊利偉送入太空。飛船繞地球飛行14圈后,于10月16日6時23分安全降落在內(nèi)蒙古主著陸場?!?/p>
《勻速圓周運動》為高中物理必修2第五章第4節(jié).它是學(xué)生在充分掌握了曲線運動的規(guī)律和曲線運動問題的處理方法后,接觸到的又一個美麗的曲線運動,本節(jié)內(nèi)容作為該章節(jié)的重要部分,主要要向?qū)W生介紹描述圓周運動的幾個基本概念,為后繼的學(xué)習(xí)打下一個良好的基礎(chǔ)。人教版教材有一個的特點就是以實驗事實為基礎(chǔ),讓學(xué)生得出感性認識,再通過理論分析總結(jié)出規(guī)律,從而形成理性認識。教科書在列舉了生活中了一些圓周運動情景后,通過觀察自行車大齒輪、小齒輪、后輪的關(guān)聯(lián)轉(zhuǎn)動,提出了描述圓周運動的物體運動快慢的問題。二、教學(xué)目標(biāo)1.知識與技能①知道什么是圓周運動、什么是勻速圓周運動。理解線速度的概念;理解角速度和周期的概念,會用它們的公式進行計算。②理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T。③理解勻速圓周運動是變速運動。④能夠用勻速圓周運動的有關(guān)公式分析和解決具體情景中的問題。
《函數(shù)的單調(diào)性與最大(小)值》是高中數(shù)學(xué)新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學(xué)生對增減性有一個初步的感性認識,所以本節(jié)課是學(xué)生數(shù)學(xué)思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應(yīng)用,對解決各種數(shù)學(xué)問題有著廣泛作用。課程目標(biāo)1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學(xué)學(xué)科素養(yǎng)
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大小. 3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.1節(jié)《對數(shù)函數(shù)的概念》。對數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。學(xué)習(xí)中讓學(xué)生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)函數(shù)的定義,會求對數(shù)函數(shù)的定義域;2、了解對數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對數(shù)函數(shù)過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識,感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標(biāo)1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認識圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時,本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡單應(yīng)用,進一步加深對函數(shù)概念的理解。課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡單的分段函數(shù),并能簡單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標(biāo)1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用.
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應(yīng)關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應(yīng)的運動變化規(guī)律.課程目標(biāo)1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學(xué)運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學(xué)表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實踐相互銜接的樞紐,特別在應(yīng)用意識日益加深的今天,函數(shù)模型的應(yīng)用實質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認識函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運算:運用函數(shù)模型解決實際問題;
四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識,進一步培養(yǎng)學(xué)生的建模意識.五、作業(yè)1. 課時練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識要點,及運用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯點;