提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教A版高中數學必修一二次函數與一元二次方程、不等式教學設計(2)

  • 人教A版高中數學必修一二次函數與一元二次方程、不等式教學設計(2)

    人教A版高中數學必修一二次函數與一元二次方程、不等式教學設計(2)

    三個“二次”即一元二次函數、一元二次方程、一元二次不等式是高中數學的重要內容,具有豐富的內涵和密切的聯系,同時也是研究包含二次曲線在內的許多內容的工具 高考試題中近一半的試題與這三個“二次”問題有關 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯系,掌握函數、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數與一元二次方程,一元二次不等式之間的聯系。2. 使學生能夠運用二次函數及其圖像,性質解決實際問題. 3. 滲透數形結合思想,進一步培養(yǎng)學生綜合解題能力。數學學科素養(yǎng)1.數學抽象:一元二次函數與一元二次方程,一元二次不等式之間的聯系;2.邏輯推理:一元二次不等式恒成立問題;3.數學運算:解一元二次不等式;4.數據分析:一元二次不等式解決實際問題;5.數學建模:運用數形結合的思想,逐步滲透一元二次函數與一元二次方程,一元二次不等式之間的聯系。

  • 人教A版高中數學必修一基本不等式教學設計(2)

    人教A版高中數學必修一基本不等式教學設計(2)

    《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.

  • 北師大初中九年級數學下冊二次函數與一元二次方程2教案

    北師大初中九年級數學下冊二次函數與一元二次方程2教案

    教學目標:1.知道二次函數與一元二次方程的聯系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數圖象求方程的根.教學重點:二次函數與一元二次方程的聯系.預設難點:用二次函數與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數y=ax2+bx+c當函數值y=0時的特殊情況.二次函數y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?

  • 北師大初中九年級數學下冊二次函數與一元二次方程1教案

    北師大初中九年級數學下冊二次函數與一元二次方程1教案

    解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.

  • 人教A版高中數學必修一等式性質與不等式性質教學設計(2)

    人教A版高中數學必修一等式性質與不等式性質教學設計(2)

    等式性質與不等式性質是高中數學的主要內容之一,在高中數學中占有重要地位,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數學學科素養(yǎng)1.數學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數學運算:比較多項式的大小及重要不等式的應用;4.數據分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。

  • 人教A版高中數學必修一函數的概念教學設計(2)

    人教A版高中數學必修一函數的概念教學設計(2)

    函數在高中數學中占有很重要的比重,因而作為函數的第一節(jié)內容,主要從三個實例出發(fā),引出函數的概念.從而就函數概念的分析判斷函數,求定義域和函數值,再結合三要素判斷函數相等.課程目標1.理解函數的定義、函數的定義域、值域及對應法則。2.掌握判定函數和函數相等的方法。3.學會求函數的定義域與函數值。數學學科素養(yǎng)1.數學抽象:通過教材中四個實例總結函數定義;2.邏輯推理:相等函數的判斷;3.數學運算:求函數定義域和求函數值;4.數據分析:運用分離常數法和換元法求值域;5.數學建模:通過從實際問題中抽象概括出函數概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數的概念,函數的三要素。難點:函數概念及符號y=f(x)的理解。

  • 人教A版高中數學必修一函數的零點與方程的解教學設計(2)

    人教A版高中數學必修一函數的零點與方程的解教學設計(2)

    本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.

  • 人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;

  • 人教A版高中數學必修一正弦函數、余弦函數的圖像教學設計(2)

    人教A版高中數學必修一正弦函數、余弦函數的圖像教學設計(2)

    由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.

  • 人教A版高中數學必修一正弦函數、余弦函數的性質教學設計(2)

    人教A版高中數學必修一正弦函數、余弦函數的性質教學設計(2)

    本節(jié)課是正弦函數、余弦函數圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數、余弦函數的性質. 課程目標1.了解周期函數與最小正周期的意義;2.了解三角函數的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數的周期;4.借助圖象直觀理解正、余弦函數在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數學學科素養(yǎng)1.數學抽象:理解周期函數、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數學建模:讓學生借助數形結合的思想,通過圖像探究正、余弦函數的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數、余弦函數的性質; 難點:應用正、余弦函數的性質來求含有cosx,sinx的函數的單調性、最值、值域及對稱性.

  • 北師大初中數學九年級上冊一元二次方程的根與系數的關系2教案

    北師大初中數學九年級上冊一元二次方程的根與系數的關系2教案

    3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數學九年級上冊一元二次方程的根與系數的關系2教案

    北師大初中數學九年級上冊一元二次方程的根與系數的關系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯系?小組交流。3、一般地,對于關于 方程 為已知常數, ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現的現象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數學九年級上冊用公式法求解一元二次方程2教案

    北師大初中數學九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 北師大初中數學九年級上冊用公式法求解一元二次方程2教案

    北師大初中數學九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 人教A版高中數學必修一正切函數的圖像與性質教學設計(2)

    人教A版高中數學必修一正切函數的圖像與性質教學設計(2)

    本節(jié)課是三角函數的繼續(xù),三角函數包含正弦函數、余弦函數、正切函數.而本課內容是正切函數的性質與圖像.首先根據單位圓中正切函數的定義探究其圖像,然后通過圖像研究正切函數的性質. 課程目標1、掌握利用單位圓中正切函數定義得到圖象的方法;2、能夠利用正切函數圖象準確歸納其性質并能簡單地應用.數學學科素養(yǎng)1.數學抽象:借助單位圓理解正切函數的圖像; 2.邏輯推理: 求正切函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數的圖像; 5.數學建模:讓學生借助數形結合的思想,通過圖像探究正切函數的性質. 重點:能夠利用正切函數圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數定義得到其圖象.

  • 人教A版高中數學必修一不同函數增長的差異教學設計(2)

    人教A版高中數學必修一不同函數增長的差異教學設計(2)

    本節(jié)課在已學冪函數、指數函數、對數函數的增長方式存在很大差異.事實上,這種差異正是不同類型現實問題具有不同增長規(guī)律的反應.而本節(jié)課重在研究不同函數增長的差異.課程目標1.掌握常見增長函數的定義、圖象、性質,并體會其增長的快慢.2.理解直線上升、對數增長、指數爆炸的含義以及三種函數模型的性質的比較,培養(yǎng)數學建模和數學運算等核心素養(yǎng).數學學科素養(yǎng)1.數學抽象:常見增長函數的定義、圖象、性質;2.邏輯推理:三種函數的增長速度比較;3.數學運算:由函數圖像求函數解析式;4.數據分析:由圖象判斷指數函數、對數函數和冪函數;5.數學建模:通過由抽象到具體,由具體到一般的數形結合思想總結函數性質.重點:比較函數值得大??;難點:幾種增長函數模型的應用.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。

  • 人教A版高中數學必修一冪函數教學設計(2)

    人教A版高中數學必修一冪函數教學設計(2)

    冪函數是在繼一次函數、反比例函數、二次函數之后,又學習了單調性、最值、奇偶性的基礎上,借助實例,總結出冪函數的概念,再借助圖像研究冪函數的性質.課程目標1、理解冪函數的概念,會畫冪函數y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結合這幾個冪函數的圖象,理解冪函數圖象的變化情況和性質;3、通過觀察、總結冪函數的性質,培養(yǎng)學生概括抽象和識圖能力.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數冪函數;2.邏輯推理:常見冪函數的性質;3.數學運算:利用冪函數的概念求參數;4.數據分析:比較冪函數大??;5.數學建模:在具體問題情境中,運用數形結合思想,利用冪函數性質、圖像特點解決實際問題。重點:常見冪函數的概念、圖象和性質;難點:冪函數的單調性及比較兩個冪值的大小.

  • 北師大初中數學九年級上冊一元二次方程的根與系數的關系1教案

    北師大初中數學九年級上冊一元二次方程的根與系數的關系1教案

    方程有兩個不相等的實數根.綜上所述,m=3.易錯提醒:本題由根與系數的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數的關系求代數式的值已知方程一根,利用根與系數的關系求方程的另一根判別式及根與系數的關系的綜合應用讓學生經歷探索,嘗試發(fā)現韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經歷發(fā)現問題、發(fā)現關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹的治學精神.

  • 北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.

  • 北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經歷從用配方法解數字系數的一元二次方程到解字母系數的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數式通性,感受數學的嚴謹性和數學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.

12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。