1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.
6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
等式性質與不等式性質是高中數(shù)學的主要內容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。
(4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結果中的一個,但事先不確定出現(xiàn)哪個結果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結果?如何表示這些結果?根據(jù)球的號碼,共有10種可能結果。如果用m表示“搖出的球的號碼為m”這一結果,那么所有可能結果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。
本節(jié)內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
王安石,字介甫,號半山。北宋著名政治家、思想家、文學家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風又綠江南岸,明月何時照我還?!鼻矣忻鳌豆鹬ο恪返?。介紹之后設置這樣的導入語:今天我們共同走進王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學生初步了解將要學到的基本內容,了解文章大意及思想意圖,使學生對課文內容形成整體感知。首先,我會讓學生根據(jù)課前預習,出聲誦讀課文,同時注意朗讀的快慢、停頓、語調、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會引導學生談談他感受。學生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢,有對景物的贊美和對歷史的感喟。
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學的重要內容,具有豐富的內涵和密切的聯(lián)系,同時也是研究包含二次曲線在內的許多內容的工具 高考試題中近一半的試題與這三個“二次”問題有關 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學生能夠運用二次函數(shù)及其圖像,性質解決實際問題. 3. 滲透數(shù)形結合思想,進一步培養(yǎng)學生綜合解題能力。數(shù)學學科素養(yǎng)1.數(shù)學抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學運算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實際問題;5.數(shù)學建模:運用數(shù)形結合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本課是高中數(shù)學第一章第4節(jié),充要條件是中學數(shù)學中最重要的數(shù)學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.
本章是第三章第一節(jié)的開端,學生在第二節(jié)已經學習了元素的組成和一些生物大分子,本節(jié)課內容是學會使用顯微鏡,這是生物學習過程中最為重要的一種手段之一。對于今后的實驗學習有著極其重要的作用。 學生中大部分同學在初中階段都有接觸過光學顯微鏡,所以在學習理論知識的時候能夠順利的進行,但因為學校的條件有限,不能保證同學們進行顯微鏡的實驗,本節(jié)課結合學生情況和實際情況,采用圖片和模型展示的方法進行。 知識與能力 1、概述細胞學說建立的過程。 2、概述細胞學說的內容和意義。 3、學習制作臨時玻片標本,使用顯微鏡和繪圖的能。
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時對函數(shù)圖象的形狀和位置的影響。通過引導學生對函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜、由特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法;通過對參數(shù)φ、ω、A的分類討論,讓學生深刻認識圖象變換與函數(shù)解析式變換的內在聯(lián)系。通過圖象變換和“五點”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點所在。提高學生的推理能力。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。
本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質的探究,培養(yǎng)學生數(shù)形結合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;
2.過程與方法 通過實踐操作、猜想驗證、合作探究,經歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質的活動過程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗“做數(shù)學”的成功。3.情感態(tài)度與價值觀 (1)發(fā)現(xiàn)生活中的數(shù)學美,會從美觀和實用的角度解決生活中的數(shù)學問題。 (2)學會從全面、周到的角度考慮問題。 【教學重點】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質;理解兩點間的距離的含義?!窘虒W難點】 引導探索三角形的邊的關系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體、學具袋【課時安排】 1課時【教學過程】(一)復習導入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
1. 知識與技能 通過學生活動,幫助學生理解三角形按角分類的方法,掌握直角三角形、銳角三角形、鈍角三角形的概念;知道等腰三角形、等邊三角形。培養(yǎng)學生觀察,動手操作和抽象概括的能力;發(fā)展空間觀念。2.過程與方法 使學生經歷觀察、操作、比較、概括等過程,在分類中體會每一類三角形角的特點;發(fā)現(xiàn)邊的特點。滲透集合思想。3.情感態(tài)度與價值觀 激發(fā)學生的主動參與意識,使學生感受到成功的喜悅,更增強學習興趣?!窘虒W重點】 直角三角形、銳角三角形、鈍角三角形的概念。【教學難點】發(fā)現(xiàn)三角形角的特點?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體【課時安排】 1課時【教學過程】(一)復習導入 師:說一說下面的角各是什么角。
一、說教材 (一)教材簡析我說課的內容是部編版的一篇課文。課文從冀中地道戰(zhàn)出現(xiàn)的原因、作用、地道的樣式結構及特點等方面進行了介紹和說明,并對冀中的地道戰(zhàn)作了高度評價,熱情頌揚了人民群眾的無窮智慧和頑強斗志。這篇文章可分為三個部分,前一部分說明冀中的地道戰(zhàn)出現(xiàn)的原因和作用;后一部分對地道戰(zhàn)作出了高度的評價;中間的重點部分則主要介紹地道的樣式及特點。課文中間的重點部分按由總到分的順序和空間轉換順序,先介紹冀中地道的總體結構,再分別介紹各種具體的設計樣式及其保護自己、打擊敵人、防止破壞和傳遞信息的功用,體現(xiàn)了它設計周密、易守能攻、靈活多樣、富有創(chuàng)造性的特點。(二)教學目標知識目標:學習本課生字新詞,理解課文內容,了解地道戰(zhàn)的產生、作用和地道的結構特點。能力目標:正確、流利地朗讀課文,理清課文敘述順序,學習按一定順序寫的方法。情感目標:體會人民的智慧和力量是無窮無盡的,認識人民戰(zhàn)爭的巨大威力,受到愛國主義的教育。
2學情分析可以說動漫卡通一直伴隨著孩子們的成長,每個孩子都十分喜愛看動漫卡通,尤其是現(xiàn)在的兒童更是在動漫卡通世界里成長的一代,所以學生對動漫卡通形象并不陌生。本課通過大量學生喜歡的動漫卡通形象的欣賞,掌握動漫卡通畫形象的創(chuàng)作表現(xiàn)方法。3重點難點教學重點:感受動漫卡通形象靈動多變的造型之美,并體會創(chuàng)作的樂趣。教學難點:利用學到的知識,進行動漫卡通形象表現(xiàn)。
2學情分析本課屬于“造型.表現(xiàn)”,學習領域??蓯塾哪膭勇蜗鬂B透了具象的造型知識,培養(yǎng)了學生的創(chuàng)新精神,豐富著孩子們的美好童年回憶。本課介紹了幾種不同表現(xiàn)形式的動漫形象。聯(lián)系生活原型與動漫形象,告訴學生動漫形像來源于現(xiàn)實生活,并通過文字和示范講述動漫行象的造型手法(擬人化、變形、夸張等),引導學生大膽繪制簡單的動漫形象。3 重難點1、教學重點:讓學生了解動漫的風格,主要的設計手法,激發(fā)學生豐富的想象力,繪制出幽默、夸張、富有童趣的動漫形象。2、教學難點:讓學生運用擬人、夸張、添加、變形、寫實等方法,畫出動漫形象
一、導入新課上課,同學們好!今天的美術課和平時有點不一樣,主要有兩個方面,其一、教室里來了許多老師和我們一起來上這一堂美術課,大家用掌聲表示歡迎。其二、就是唐老師為大家?guī)砹艘晃恍』锇?,同學們肯定會喜歡上它的,大家看,它來了--展示課件動畫圖片和播放聲音,出現(xiàn)一個小圓點,(說話:同學們,大家好!我的名字叫小圓點,我喜歡穿各種色彩的衣服,我的本領可大啦!能大能小,位置和大小的變化還能給人產生不一樣的感覺!在生活中和美術作品中經常可以見到我的身影!大家都稱我為魅力的小圓點呢?。?/p>