做有責任心的中學生在從事一定工作的人應(yīng)當具備的品質(zhì)中,責任感,是那樣樸素而又十分可貴。忍著病痛走訪貧苦百姓的焦裕祿,迎著洪水探訪災(zāi)情的張鳴歧,以微薄收入供養(yǎng)藏族孤兒的孔繁森……縷述先進人物的思想和事跡,無不具備一個共同的特點,就是對國家、對人民、對事業(yè)有著高度的責任感?!安换紵o策,只怕無心?!币粋€人的學識、能力、才華很重要,但缺乏責任感、責任意識和責任心,就不堪大用。即使小用,也令人擔心。責任感反映一個人的精神境界。有責任感的人,突出的優(yōu)點是他們絕不是個人中心主義者,他人的、集體的、國家的利益總是先于自己的利益。責任感反映一個人的思想品德,在“天下熙熙,皆為利來;天下攘攘,皆為利往”的喧囂中,有責任感的人淡泊的是名利。他們的價值觀是在幫助別人獲得幸福中得到滿足,而他們自己卻少有索求,因而責任感總是和顧全大局、助人為樂、謙遜禮讓等優(yōu)良品德聯(lián)系在一起。責任感是國民素質(zhì)的一個重要方面。
二、說學生本屆高一學生經(jīng)過了三年初中課改,在心理上,他們渴望表現(xiàn)的欲望和自主探究的欲望比較強烈,對有興趣的知識表現(xiàn)出高度地熱情,并具有一定的團結(jié)協(xié)作能力,但還是應(yīng)該正視一個并不樂觀的現(xiàn)實——在寫作方面,學生知識還停留在簡單的記敘及表達方式綜合運用上,至于巧妙構(gòu)思、謀篇布局很是空白。即便已經(jīng)經(jīng)過高中一個學期的學習,但還是有大部分學生依然基礎(chǔ)較為薄弱,甚至出現(xiàn)不知從何下筆的現(xiàn)象。三、說教法與學法“老師搭臺,學生唱戲”1、教法:本課將安排兩課時(一課時學習一課時練筆),采用 PPT 多媒體課件教學,嘗試用角色扮演法、圖片展示法和多媒體教學等方法,教學中應(yīng)該重視學生的參與性和探究性。2、學法:學生應(yīng)該充分利用多角度創(chuàng)設(shè)的學習情境來激發(fā)自身學習的興趣和熱情,分組討論,小組互助等形式讓學生積極自主參與、進行問題探究學習。理論依據(jù):建構(gòu)主義理論“學生是學習的中心”的闡釋,教師應(yīng)該做學生主動建構(gòu)意義的幫助者、促進者。
老師、同學們:早上好!今天,我懷著激動的心情站在這鮮艷的五星紅旗下講話,感到無比的高興和自豪。時間如流水,三天的假期在火熱蓬勃的"五一"勞動節(jié)中一晃而過。我們年年都急切地盼望"五一"勞動節(jié)的到來,以各種各樣的方式來慶祝它。那么,同學們知道"五一"勞動節(jié)是怎樣誕生的嗎?19世紀80年代,美國和歐洲的許多國家,資本家不斷采取增加勞動時間和勞動強度的辦法來殘酷地剝削工人。工人們每天要勞動長達18個小時,但工資卻很低。沉重的壓迫激起了工人們巨大的憤怒。就在1886年的5月1日,為反對資本家的剝削和壓迫,爭取工人的合法權(quán)利,在革命導師恩格斯的指導下,許多國家的工人,不怕警察的刺刀威脅,舉行了歷史上第一次國際性的"五一"大示威。所以就誕生了今天的"五一"國際勞動節(jié)。
(2).教學手段為了使我根據(jù)教材而設(shè)計的三個教學目標以及重點難點得以的突出和突破,達到最大化的展示境界,同時也為了配合以上我選擇的四種教法得以完滿實現(xiàn),我決定采用“多媒體”教學手段進行全程教學。利用電腦的信息容量大,操作簡便等優(yōu)點,形象生動的直觀展示教學內(nèi)容,不但提高學習效率和質(zhì)量,而且容易激發(fā)學生的學習興趣和調(diào)動學習的積極性。四、說學法我為學生設(shè)計了三個學習方法:1.讓學生學會在探究中學。通過“對黑人嚴酷處境的探究”和對文中重點語句的探究,培養(yǎng)學生在探究中學習的能力。2.讓學生學會在讀中學。通過“誦讀法”指導學生在誦讀過程中感受演講詞內(nèi)在的魅力,學會在讀中學。3.讓學生學會在練習中學。通過“課外延伸練習法”,對所學的知識進行運用,培養(yǎng)學生的創(chuàng)新和自學能力。
竺可楨(1890--1974),浙江上虞人。氣象學家、地理學家、教育家。中國近代地理學和氣象學的奠基者。領(lǐng)導創(chuàng)建了我國第一個氣象研究所和首批氣象臺站,并在臺風、季風、氣候變遷、農(nóng)業(yè)氣候、物候、自然區(qū)劃等方面有開拓性的研究。創(chuàng)建了我國第一個地學系,成為當時培養(yǎng)地學英才的搖籃。以求實精神領(lǐng)導浙江大學工作,培育了多方面的人才。長期領(lǐng)導中國科學院工作,積極倡導并組織和參加中國地學、生物學、天文學、自然資源綜合考察及自然科學史研究等多方面工作,主編了《中國自然區(qū)劃》、《中國自然地理》等叢書,是我國地理學和氣象學界的一代宗師。
一、師德的要求——愛崗敬業(yè)、獻身教育 教師的職業(yè)有苦也有樂,平凡中見偉大,只有愛崗敬業(yè),教師才能積極面對自身的社會責任和社會義務(wù),才能自覺、不斷地完善自我,才能在教育活動中有所收獲?! 〗處煵粌H僅是在奉獻、在燃燒,而且同樣是在汲取,在更新,在升華。教師要付出艱辛的勞動,但是苦中有樂,樂在其中。教師的樂趣就是照亮了別人,充實了自己。正是這種成就感、幸福感,激勵著千千萬萬的教師不辭辛勞地為教育事業(yè)獻身。
高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。
1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
科學是人類認識世界的重要工具,閱讀科普說明文不僅可以啟迪心智,了解更多知識。而且更夠激發(fā)學生對科學的興趣。學習這些文章要注重學生科學精神的培養(yǎng),關(guān)注科學探索的過程,感受科學家在科學探索中表現(xiàn)的人格魅力。我們知道一些科學家就是因為閱讀了相關(guān)的科普文章才對某一學科產(chǎn)生興趣,從而走上成功之路的。我們在講解的時候可以跟學生列舉一些例子,讓學生認識到一篇好的科普文章的重大意義。
我以以《登高》為例,引導學生進行意象分析,感悟意境美。古人云“立象以盡意”“古詩之妙,專求意象”意象是詩人情感的載體,是詩歌的靈魂。引導學生張開聯(lián)想和想象的翅膀去感受,去體驗是意象,詩歌鑒賞的關(guān)鍵。科林伍德說“真正藝術(shù)的作品,不是看見的,也不是聽到的,而是想象中的某種東西。”詩人通過想象創(chuàng)造出詩的形象,我們讀者通過想象豐富地再現(xiàn)詩人創(chuàng)造的形象。而感受體驗則是以全部身心投入作品,心靈與心靈相溝通,感情與感情相交流,對詩人的想象活動進行再經(jīng)歷和再體驗。因此,在引導意象解讀中,我先讓學生點擊這一個,就是通過抓修飾詞、依據(jù)感情基調(diào)、展開想象具體分析本詩中每個意象的情感意蘊和審美意蘊,使學生明白意象在每首詩中的獨特性。